Elastic Recovery In-Die During Cyclic Loading of Solid Anaerobic Digestate
<p>A schematic diagram for determining the in-die elastic response, ER<sub>in-die</sub>.</p> "> Figure 2
<p>Effect of moisture content (<b>a</b>), applied pressure (<b>b</b>), and cycle number (<b>c</b>) of SAD on elastic recovery (ER<sub>in-die</sub>—elastic recovery, MC—moisture content, P—pressure, CN—cycle number).</p> "> Figure 3
<p>The interaction effects of moisture content with cycle number (<b>a</b>) and pressure (<b>b</b>) on the elastic recovery of SAD.</p> "> Figure 4
<p>Relationships between elastic recovery in-die and out-of-die.</p> "> Figure 5
<p>Hysteresis loops for 10 and 22% levels of moisture content of SAD.</p> "> Figure 6
<p>Effect of moisture content (<b>a</b>) and cycle number (<b>b</b>) on the area bounded between loading and unloading curves (without cycle 1).</p> "> Figure 7
<p>Strength index of pellets for variable pressure values and moisture contents (<b>a</b>), (<b>b</b>) effect of elastic recovery in-die ER<sub>in-die</sub> on SI values.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Solid Anaerobic Digestate
2.2. Sample Preparation/Moisture Determination
2.3. Cyclic Loading/Unloading
2.4. Pellet Strength
2.5. Statistical Analysis
3. Results
3.1. Effects of Moisture, Pressure and Cycle Number
3.2. Hysteresis Loops
3.3. Correlation Between Elastic Recovery and Pellet Strength
3.4. Correlation Between Elastic Recovery and Some Hysteresis Features
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Möller, K.; Müller, T. Effects of Anaerobic Digestion on Digestate Nutrient Availability and Crop Growth: A Review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Samoraj, M.; Mironiuk, M.; Izydorczyk, G.; Witek-Krowiak, A.; Szopa, D.; Moustakas, K.; Chojnacka, K. The Challenges and Perspectives for Anaerobic Digestion of Animal Waste and Fertilizer Application of the Digestate. Chemosphere 2022, 295, 133799. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Y.; Yun, S.; Wang, Z.; Zhang, Y.; Zhang, X.; Wang, K. Recent Advances in Bio-Based Carbon Materials for Anaerobic Digestion: A Review. Renew. Sustain. Energy Rev. 2021, 135, 110378. [Google Scholar] [CrossRef]
- Gebhardt, M.; Milwich, M.; Lemmer, A.; Gresser, G.T. Composites Based on Biogas Digestate. Compos. Part C Open Access 2022, 9, 100311. [Google Scholar] [CrossRef]
- Kratzeisen, M.; Starcevic, N.; Martinov, M.; Maurer, C.; Müller, J. Applicability of Biogas Digestate as Solid Fuel. Fuel 2010, 89, 2544–2548. [Google Scholar] [CrossRef]
- Cathcart, A.; Smyth, B.M.; Lyons, G.; Murray, S.T.; Rooney, D.; Johnston, C.R. An Economic Analysis of Anaerobic Digestate Fuel Pellet Production: Can Digestate Fuel Pellets Add Value to Existing Operations? Clean. Eng. Technol. 2021, 3, 100098. [Google Scholar] [CrossRef]
- Cathcart, A.; Smyth, B.M.; Forbes, C.; Lyons, G.; Murray, S.T.; Rooney, D.; Johnston, C.R. Effect of Anaerobic Digestate Fuel Pellet Production on Enterobacteriaceae and Salmonella Persistence. GCB Bioenergy 2022, 14, 1055–1064. [Google Scholar] [CrossRef]
- Łysiak, G.; Kulig, R.; Aridhee, J.K. Al Toward New Value-Added Products Made from Anaerobic Digestate: Part 1—Study on the Effect of Moisture Content on the Densification of Solid Digestate. Sustainability 2023, 15, 4548. [Google Scholar] [CrossRef]
- Łysiak, G.; Kulig, R.; Kowalczyk-Juśko, A. Toward New Value-Added Products Made from Anaerobic Digestate: Part 2—Effect of Loading Level on the Densification of Solid Digestate. Sustainability 2023, 15, 7396. [Google Scholar] [CrossRef]
- Karamchandani, A.; Yi, H.; Puri, V.M. Comparison of Mechanical Properties of Ground Corn Stover, Switchgrass, and Willow and Their Pellet Qualities. Part. Sci. Technol. 2017, 36, 447–456. [Google Scholar] [CrossRef]
- Kong, L.J.; Tian, S.H.; He, C.; Du, C.M.; Tu, Y.T.; Xiong, Y. Effect of Waste Wrapping Paper Fiber as a “Solid Bridge” on Physical Characteristics of Biomass Pellets Made from Wood Sawdust. Appl. Energy 2012, 98, 33–39. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H. High-Pressure Densification of Wood Residues to Form an Upgraded Fuel. Biomass Bioenergy 2000, 19, 177–186. [Google Scholar] [CrossRef]
- Li, W.; Guo, W.; Bu, W.; Jiang, Y.; Wang, Y.; Yang, W.; Yin, X. A Non-Liner Constitutive Model of Three Typical Biomass Material Pelletization for Capturing Particle Mechanical Behaviors during the Elasto-Visco-Plastic Deformation Stage. Renew. Energy 2020, 149, 1370–1385. [Google Scholar] [CrossRef]
- Styks, J.; Knapczyk, A.; Łapczyńska-Kordon, B. Effect of Compaction Pressure and Moisture Content on Post-Agglomeration Elastic Springback of Pellets. Materials 2021, 14, 879. [Google Scholar] [CrossRef]
- Saha, N.; Goates, C.; Hernandez, S.; Jin, W.; Westover, T.; Klinger, J. Characterization of Particle Size and Moisture Content Effects on Mechanical and Feeding Behavior of Milled Corn (Zea mays L.) Stover. Powder Technol. 2022, 405, 117535. [Google Scholar] [CrossRef]
- Frodeson, S.; Lindén, P.; Henriksson, G.; Berghel, J. Compression of Biomass Substances—A Study on Springback Effects and Color Formation in Pellet Manufacture. Appl. Sci. 2019, 9, 4302. [Google Scholar] [CrossRef]
- Frodeson, S.; Henriksson, G.; Berghel, J. Effects of Moisture Content during Densification of Biomass Pellets, Focusing on Polysaccharide Substances. Biomass Bioenergy 2019, 122, 322–330. [Google Scholar] [CrossRef]
- Grdešič, P.; Paudel, A.; German Ilić, I. High-Molecular-Weight Hypromellose from Three Different Suppliers: Effects of Compression Speed, Tableting Equipment, and Moisture on the Compaction. AAPS PharmSciTech 2020, 21, 203. [Google Scholar] [CrossRef]
- Vreeman, G.; Sun, C.C. Air Entrapment during Tablet Compression—Diagnosis, Impact on Tableting Performance, and Mitigation Strategies. Int. J. Pharm. 2022, 615, 121514. [Google Scholar] [CrossRef]
- Dhamodaran, A.; Afzal, M.T. Springback in Pellets. Bioresources 2012, 7, 4362–4376. [Google Scholar] [CrossRef]
- Anukam, A.; Berghel, J.; Henrikson, G.; Frodeson, S.; Ståhl, M. A Review of the Mechanism of Bonding in Densified Biomass Pellets. Renew. Sustain. Energy Rev. 2021, 148, 111249. [Google Scholar] [CrossRef]
- Vivek, A.K.; Sukhija, M.; Singh, K.L. Effect of Montmorillonite Nanoclay and Sulphur-Modified Blends on the Properties of Bituminous Mixes. Innov. Infrastruct. Solut. 2021, 6, 119. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.S.; Hong, S.; Ha, E.S.; Nie, H.; Zhou, Q.T.; Kim, M.S. Tableting Process-Induced Solid-State Polymorphic Transition. J. Pharm. Investig. 2022, 52, 175–194. [Google Scholar] [CrossRef]
- Trinh, V.Q.; Nagy, S.; Csőke, B. Effect of Moisture Content and Particle Size on Beech Biomass Agglomeration. Adv. Agric. Bot. 2017, 9, 79–89. [Google Scholar]
- Bashaiwoldu, A.B.; Podczeck, F.; Newton, J.M. A Study on the Effect of Drying Techniques on the Mechanical Properties of Pellets and Compacted Pellets. Eur. J. Pharm. Sci. 2004, 21, 119–129. [Google Scholar] [CrossRef]
- Wongsiriamnuay, T.; Tippayawong, N. Effect of Densification Parameters on the Properties of Maize Residue Pellets. Biosyst. Eng. 2015, 139, 111–120. [Google Scholar] [CrossRef]
- Granado, M.P.P.; Suhogusoff, Y.V.M.; Santos, L.R.O.; Yamaji, F.M.; De Conti, A.C. Effects of Pressure Densification on Strength and Properties of Cassava Waste Briquettes. Renew. Energy 2021, 167, 306–312. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A Review of Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application. Biofuels Bioprod. Biorefining 2011, 5, 683–707. [Google Scholar] [CrossRef]
- Hirschberg, C.; Paul, S.; Rantanen, J.; Sun, C.C. A Material-Saving and Robust Approach for Obtaining Accurate out-of-Die Powder Compressibility. Powder Technol. 2020, 361, 903–909. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Xiao, Z.; Liang, J.; Li, H.; Cao, L.; Wang, H.; Chen, X.; Zeng, G. A Comparative Study of Biomass Pellet and Biomass-Sludge Mixed Pellet: Energy Input and Pellet Properties. Energy Convers. Manag. 2016, 126, 509–515. [Google Scholar] [CrossRef]
- Ilic, D.; Williams, K.C.; Ellis, D. Assessment of Biomass Bulk Elastic Response to Consolidation. Chem. Eng. Res. Des. 2018, 135, 185–196. [Google Scholar] [CrossRef]
- Haware, R.V.; Tho, I.; Bauer-Brandl, A. Evaluation of a Rapid Approximation Method for the Elastic Recovery of Tablets. Powder Technol. 2010, 202, 71–77. [Google Scholar] [CrossRef]
- Ilić, I.; Govedarica, B.; Šibanc, R.; Dreu, R.; Srčič, S. Deformation Properties of Pharmaceutical Excipients Determined Using an In-Die and out-Die Method. Int. J. Pharm. 2013, 446, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Vreeman, G.; Sun, C.C. Mean Yield Pressure from the In-Die Heckel Analysis Is a Reliable Plasticity Parameter. Int. J. Pharm. X 2021, 3, 100094. [Google Scholar] [CrossRef]
- PN-EN ISO 18134-3:2023-12; Solid Biofuels—Determination of Moisture Content—Part 3: Moisture in the Sample for General Analysis. Polish Committee for Standardization: Warsaw, Poland, 2023.
- Ungureanu, N.; Vladut, V.; Voicu, G.; Dinca, M.-N.; Zabava, B.-S. Influence of biomass moisture content on pellet properties-review. Eng. Rural. Dev. 2018, 17, 1876–1883. [Google Scholar] [CrossRef]
- Mizunaga, D.; Koseki, M.; Kamemoto, N.; Watano, S. Characterization of Tableting Speed-Dependent Deformation Properties of Active Pharmaceutical Ingredients in Powder Mixtures Using Out-of-Die Method. Chem. Pharm. Bull. 2021, 69, 1184–1194. [Google Scholar] [CrossRef]
- Aarseth, K.A.; Prestløkken, E. Mechanical Properties of Feed Pellets: Weibull Analysis. Biosyst. Eng. 2003, 84, 349–361. [Google Scholar] [CrossRef]
- Podczeck, F. Investigations into the Mechanical Strength Anisotropy of Sorbitol Instant Compacts Made by Uniaxial Compression. Adv. Powder Technol. 2007, 18, 361–379. [Google Scholar] [CrossRef]
- Li, D.; Li, B.; Han, Z.; Zhu, Q. Evaluation on Rock Tensile Failure of the Brazilian Discs under Different Loading Configurations by Digital Image Correlation. Appl. Sci. 2020, 10, 5513. [Google Scholar] [CrossRef]
- Khadivi, B.; Heidarpour, A.; Zhang, Q.; Masoumi, H. Characterizing the Cracking Process of Various Rock Types under Brazilian Loading Based on Coupled Acoustic Emission and High-Speed Imaging Techniques. Int. J. Rock Mech. Min. Sci. 2023, 168, 105417. [Google Scholar] [CrossRef]
- Mawla, N.; Alshafiee, M.; Gamble, J.; Tobyn, M.; Liu, L.; Walton, K.; Conway, B.R.; Timmins, P.; Asare-Addo, K. Comparative Evaluation of the Powder and Tableting Properties of Regular and Direct Compression Hypromellose from Different Vendors. Pharmaceutics 2023, 15, 2154. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.M.; Buckner, I.S. Full Out-of-Die Compressibility and Compactibility Profiles From Two Tablets. J. Pharm. Sci. 2017, 106, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.M.; Roopwani, R.; Buckner, I.S. A Material-Sparing Method for Assessment of Powder Deformation Characteristics Using Data Collected During a Single Compression–Decompression Cycle. J. Pharm. Sci. 2013, 102, 3687–3693. [Google Scholar] [CrossRef]
- Keizer, H.L.; Kleinebudde, P. Elastic Recovery in Roll Compaction Simulation. Int. J. Pharm. 2019, 573, 118810. [Google Scholar] [CrossRef]
- Schönfeld, B.V.; Westedt, U.; Wagner, K.G. Compression Modulus and Apparent Density of Polymeric Excipients during Compression—Impact on Tabletability. Pharmaceutics 2022, 14, 913. [Google Scholar] [CrossRef]
- Cabiscol, R.; Finke, J.H.; Zetzener, H.; Kwade, A. Characterization of Mechanical Property Distributions on Tablet Surfaces. Pharmaceutics 2018, 10, 184. [Google Scholar] [CrossRef]
- Hernandez, S.; Westover, T.L.; Matthews, A.C.; Ryan, J.C.B.; Williams, C.L. Feeding Properties and Behavior of Hammer- and Knife-Milled Pine. Powder Technol. 2017, 320, 191–201. [Google Scholar] [CrossRef]
Effect | SS | DF | MS | F | p |
---|---|---|---|---|---|
Intercept | 420,531.5 | 1 | 420,531.5 | 4,107,579 | p < 0.0001 |
Moisture | 1156.9 | 4 | 289.2 | 2825 | p < 0.0001 |
Cycle | 2410.4 | 9 | 267.8 | 2616 | p < 0.0001 |
Pressure | 17,697.2 | 4 | 4424.3 | 43,215 | p < 0.0001 |
Moisture × cycle | 266.9 | 36 | 7.4 | 72 | p < 0.0001 |
Moisture × pressure | 65.8 | 16 | 4.1 | 40 | p < 0.0001 |
Cycle × pressure | 4.2 | 36 | 0.1 | 1 | 0.2633 |
Moisture × cycle × pressure | 9.9 | 144 | 0.1 | 1 | 0.9979 |
Error | 51.2 | 500 | 0.1 |
Effect | SS | DF | MS | F | p |
---|---|---|---|---|---|
Intercept | 4728.1 | 1 | 4728.1 | 941,654.8 | p < 0.0001 |
Pressure | 173.2 | 4 | 43.3 | 8627.4 | p < 0.0001 |
Moisture | 48.8 | 4 | 12.2 | 2430.3 | p < 0.0001 |
Cycle | 389.6 | 8 | 48.7 | 9700.2 | p < 0.0001 |
Pressure × moisture | 37.2 | 16 | 2.32 | 463.4 | p < 0.0001 |
Pressure × cycle | 10.3 | 32 | 0.32 | 64.7 | p < 0.0001 |
Moisture × cycle | 1.58 | 32 | 0.049 | 9.85 | p < 0.0001 |
Pressure × moisture × cycle | 3.24 | 128 | 0.025 | 5.04 | p < 0.0001 |
Error | 2.25 | 1 | 0.005 | p < 0.0001 |
Parameter | SI | ERin-die | En-r | %En-r | Er | %Er | PD |
---|---|---|---|---|---|---|---|
SI | |||||||
ERin-die | 0.142 | ||||||
En-r | 0.646 | 0.752 | |||||
%En-r | −0.221 | −0.925 | −0.654 | ||||
Er | 0.395 | 0.954 | 0.837 | −0.916 | |||
%Er | 0.221 | 0.925 | 0.654 | −1.000 | 0.916 | ||
PD | −0.026 | 0.956 | 0.699 | −0.826 | 0.845 | 0.826 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łysiak, G.; Kulig, R. Elastic Recovery In-Die During Cyclic Loading of Solid Anaerobic Digestate. Materials 2024, 17, 5976. https://doi.org/10.3390/ma17235976
Łysiak G, Kulig R. Elastic Recovery In-Die During Cyclic Loading of Solid Anaerobic Digestate. Materials. 2024; 17(23):5976. https://doi.org/10.3390/ma17235976
Chicago/Turabian StyleŁysiak, Grzegorz, and Ryszard Kulig. 2024. "Elastic Recovery In-Die During Cyclic Loading of Solid Anaerobic Digestate" Materials 17, no. 23: 5976. https://doi.org/10.3390/ma17235976
APA StyleŁysiak, G., & Kulig, R. (2024). Elastic Recovery In-Die During Cyclic Loading of Solid Anaerobic Digestate. Materials, 17(23), 5976. https://doi.org/10.3390/ma17235976