A Review of Approaches to the Metallic and Non-Metallic Synthesis of Benzimidazole (BnZ) and Their Derivatives for Biological Efficacy
<p>Orthophenylenediamine compound.</p> "> Figure 2
<p>Synthetic approaches for BnZ.</p> "> Figure 3
<p>Applications of BnZ derivatives.</p> "> Figure 4
<p>Multifunctional examples of BnZ derivatives.</p> "> Figure 5
<p>BnZ-based anti-cancer drugs [<a href="#B79-molecules-28-05490" class="html-bibr">79</a>,<a href="#B80-molecules-28-05490" class="html-bibr">80</a>,<a href="#B81-molecules-28-05490" class="html-bibr">81</a>,<a href="#B82-molecules-28-05490" class="html-bibr">82</a>,<a href="#B83-molecules-28-05490" class="html-bibr">83</a>,<a href="#B84-molecules-28-05490" class="html-bibr">84</a>,<a href="#B85-molecules-28-05490" class="html-bibr">85</a>].</p> "> Figure 6
<p>BnZ-based anti-inflammatory drugs [<a href="#B89-molecules-28-05490" class="html-bibr">89</a>,<a href="#B90-molecules-28-05490" class="html-bibr">90</a>,<a href="#B91-molecules-28-05490" class="html-bibr">91</a>,<a href="#B92-molecules-28-05490" class="html-bibr">92</a>,<a href="#B93-molecules-28-05490" class="html-bibr">93</a>,<a href="#B94-molecules-28-05490" class="html-bibr">94</a>].</p> "> Figure 7
<p>BnZ-based anti-Microbial [<a href="#B99-molecules-28-05490" class="html-bibr">99</a>,<a href="#B100-molecules-28-05490" class="html-bibr">100</a>,<a href="#B101-molecules-28-05490" class="html-bibr">101</a>,<a href="#B102-molecules-28-05490" class="html-bibr">102</a>,<a href="#B103-molecules-28-05490" class="html-bibr">103</a>,<a href="#B104-molecules-28-05490" class="html-bibr">104</a>].</p> "> Figure 8
<p>BnZ-based anti-tubercular activity [<a href="#B108-molecules-28-05490" class="html-bibr">108</a>,<a href="#B109-molecules-28-05490" class="html-bibr">109</a>,<a href="#B110-molecules-28-05490" class="html-bibr">110</a>,<a href="#B111-molecules-28-05490" class="html-bibr">111</a>,<a href="#B112-molecules-28-05490" class="html-bibr">112</a>,<a href="#B113-molecules-28-05490" class="html-bibr">113</a>,<a href="#B114-molecules-28-05490" class="html-bibr">114</a>,<a href="#B115-molecules-28-05490" class="html-bibr">115</a>,<a href="#B116-molecules-28-05490" class="html-bibr">116</a>,<a href="#B117-molecules-28-05490" class="html-bibr">117</a>].</p> "> Figure 9
<p>BnZ-based anti-protozoal activity [<a href="#B121-molecules-28-05490" class="html-bibr">121</a>,<a href="#B122-molecules-28-05490" class="html-bibr">122</a>,<a href="#B123-molecules-28-05490" class="html-bibr">123</a>,<a href="#B124-molecules-28-05490" class="html-bibr">124</a>,<a href="#B125-molecules-28-05490" class="html-bibr">125</a>,<a href="#B126-molecules-28-05490" class="html-bibr">126</a>].</p> "> Scheme 1
<p>Hoebrecker method.</p> "> Scheme 2
<p>Phillip’s method.</p> "> Scheme 3
<p>Metal-catalyzed reduction of BnZ.</p> "> Scheme 4
<p>CuBr-catalyzed reactions.</p> "> Scheme 5
<p>Fe/S-catalyzed reaction of BnZ.</p> "> Scheme 6
<p>Cyclization of o-phenylenediamines with DMF.</p> "> Scheme 7
<p>Co-complex catalyst-mediated reaction.</p> "> Scheme 8
<p>Cross–coupling reaction of o–phenylenediamines with aliphatic amines (S).</p> "> Scheme 9
<p>Thermal/microwave-assisted BnZ synthesis.</p> "> Scheme 10
<p>Synthesis of BnZ under metal-free conditions with amines.</p> "> Scheme 11
<p>Metal-free BnZ biosynthesis.</p> "> Scheme 12
<p>Base-catalyzed synthesis of BnZ.</p> "> Scheme 13
<p>Synthesis of XLIX-a in green solvent.</p> "> Scheme 14
<p>Synthesis of BnZ in solution instead of PEG.</p> "> Scheme 15
<p>BnZ synthesis using ammonium chloride.</p> "> Scheme 16
<p>CAN-catalyzed polyethylene glycol–MSB reaction.</p> "> Scheme 17
<p>Microwave-irradiation-mediated BnZ synthesis.</p> ">
Abstract
:1. Introduction
2. Synthesis of Benzimidazole
3. Metal-Catalyzed Derivatives of Benzimidazole
4. Metal-Free Catalyzed Derivatives of BnZ
5. Green Synthesis of Benzimidazole
6. Multifaceted Efficacy of Benzimidazole
7. Benzimidazole-Derivative-Based Biological Activities
8. Anti-Cancer Activity
9. Anti-Inflammatory and Analgesic Activity
10. Anti-Microbial Activity
11. Anti-Tubercular Activity
12. Anti-Protozoal Activity
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rao, G.E.; Babu, P.S.; Koushik, O.S.; Sharmila, R.; Vijayabharathi, M.; Maruthikumar, S.; Prathyusha, R.; Pavankumar, P. A Review on Chemistry of Benzimidazole Nucleus and its Biological Significance. Int. J. Pharm. Chem. Biol. Sci. 2016, 6, 227–232. [Google Scholar]
- Manna, K.; Agrawal, Y.K. Microwave Assisted Synthesis of New Indophenazine 1,3,5-Trisubstruted Pyrazoline Derivatives of Benzofuran and Their Antimicrobial Activity. Bioorg. Med. Chem. Lett. 2009, 19, 2688–2692. [Google Scholar] [CrossRef]
- Kalidhar, U.; Kaur, A. An Overview on Some Benzimidazole and Sulfonamide Derivatives with Anti-Microbial Activity. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 1116–1135. [Google Scholar]
- wright, J.B. The Chemistry of the Benzimidazoles. Chem. Rev. 1951, 48, 397–541. [Google Scholar] [CrossRef] [PubMed]
- Hoebrecker, F. Benzimidazole. Ber 1872, 5, 920–926. [Google Scholar]
- Fei, F.; Zhou, Z. New Substituted Benzimidazole Derivatives: A Patent Review (2010–2012). Expert Opin. Ther. Pat. 2013, 23, 1157–1179. [Google Scholar] [CrossRef]
- Azeez, S.; Sureshbabu, P.; Chaudhary, P.; Sabiah, S.; Kandasamy, J. Tert-Butyl Nitrite Catalyzed Synthesis of Benzimidazoles from o-Phenylenediamine and Aldehydes at Room Temperature. Tetrahedron Lett. 2020, 61, 151735. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, R.; Chen, J.; Li, T.; Xu, Y. Hydrogenative Coupling of Nitriles with Diamines to Benzimidazoles Using Lignin-Derived Rh2P Catalyst. iScience 2021, 24, 103045. [Google Scholar] [CrossRef] [PubMed]
- Vijayalakshmi, P.B.; Haridasan, A.P. Pharmacognostic and Preliminary Phytochemical Evaluation of Nelamuchchala (Gymnostachyum Febrifugum Benth.). Int. J. Res. Ayush Pharm. Sci. 2017, 1, 1–6. [Google Scholar]
- Bastug, G.; Eviolitte, C.; Markó, I.E. Functionalized Orthoesters as Powerful Building Blocks for the Efficient Preparation of Heteroaromatic Bicycles. Org. Lett. 2012, 14, 3502–3505. [Google Scholar] [CrossRef] [PubMed]
- Hanan, E.J.; Chan, B.K.; Estrada, A.A.; Shore, D.G.; Lyssikatos, J.P. Mild and General One-Pot Reduction and Cyclization of Aromatic and Heteroaromatic 2-Nitroamines to Bicyclic 2 H-Imidazoles. Synlett 2010, 18, 2759–2764. [Google Scholar] [CrossRef]
- Yang, D.; Fokas, D.; Li, J.; Yu, L.; Baldino, C.M. A Versatile Method for the Synthesis of Benzimidazoles from O-Nitroanilines and Aldehydes in One Step via a Reductive Cyclization. Synthesis 2005, 1, 47–56. [Google Scholar] [CrossRef]
- Cui, W.; Kargbo, R.B.; Sajjadi-Hashemi, Z.; Ahmed, F.; Gauuan, J.F. Efficient One-Pot Synthesis of 2-Substituted Benzimidazoles from Triacyloxyborane Intermediates. Synlett 2012, 2, 247–250. [Google Scholar] [CrossRef]
- Sluiter, J.; Christoffers, J. Synthesis of 1-Methylbenzimidazoles from Carbonitriles. Synlett 2009, 1, 63–66. [Google Scholar] [CrossRef]
- Wray, B.C.; Stambuli, J.P. Synthesis of N-Arylindazoles and Benzimidazoles from a Common Intermediate. Org. Lett. 2010, 12, 4576–4579. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Ye, M.; Zong, C.; Hu, F.; Feng, L.; Wang, X.; Wang, Y.; Chen, C. Copper-Catalyzed Intramolecular C-N Bond Formation: A Straightforward Synthesis of Benzimidazole Derivatives in Water. J. Org. Chem. 2011, 76, 716–719. [Google Scholar] [CrossRef]
- Saha, P.; Ramana, T.; Purkait, N.; Ali, M.A.; Paul, R.; Punniyamurthy, T. Ligand-Free Copper-Catalyzed Synthesis of Substituted Benzimidazoles, 2-Aminobenzimidazoles, 2-Aminobenzothiazoles, and Benzoxazoles. J. Org. Chem. 2009, 74, 8719–8725. [Google Scholar] [CrossRef]
- Diao, X.; Wang, Y.; Jiang, Y.; Ma, D. Assembly of Substituted 1H-Benzimidazoles and 1,3-Dihydrobenzimidazol-2- Ones via CuI/L-Proline Catalyzed Coupling of Aqueous Ammonia with 2-Iodoacetanilides and 2-Iodophenylcarbamates. J. Org. Chem. 2009, 74, 7974–7977. [Google Scholar] [CrossRef]
- Kim, Y.; Kumar, M.R.; Park, N.; Heo, Y.; Lee, S. Copper-Catalyzed, One-Pot, Three-Component Synthesis of Benzimidazoles by Condensation and C-N Bond Formation. J. Org. Chem. 2011, 76, 9577–9583. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, L.-Z.; Wu, J.; Lu, D.; Ma, B.-L.; Du, Z.-T. Microwave-Assisted Syntehsis of 2-Substituted 1H-Benzo[d]imidazoles and Their Antifungal Activities in vitro. Heterocycles 2013, 87, 1545–1552. [Google Scholar] [CrossRef]
- Trivedi, R.; De, S.K.; Gibbs, R.A. A Convenient One-Pot Synthesis of 2-Substituted Benzimidazoles. J. Mol. Catal. A Chem. 2006, 245, 8–11. [Google Scholar] [CrossRef]
- Yang, D.; Fu, H.; Hu, L.; Jiang, Y.; Zhao, Y. Copper-Catalyzed Synthesis of Benzimidazoles via Cascade Reactions of o-Haloacetanilide Derivatives with Amidine Hydrochlorides. J. Org. Chem. 2008, 73, 7841–7844. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Ermolenko, L.; Al-mourabit, A. Iron Sulfide Catalyzed Redox/Condensation Cascade Reaction between 2-Amino/Hydroxy Nitrobenzenes and Activated Methyl Groups: A Straightforward Atom Economical Approach to 2-Hetaryl-Benzimidazoles and -Benzoxazoles. J. Am. Chem. Soc. 2013, 135, 118–121. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Z.; Miao, C.; Liu, W.; Sun, W. Synthesis of Benzimidazoles from O-Phenylenediamines and DMF Derivatives in the Presence of PhSiH3. Tetrahedron 2017, 73, 3458–3462. [Google Scholar] [CrossRef]
- Daw, P.; Ben-David, Y.; Milstein, D. Direct Synthesis of Benzimidazoles by Dehydrogenative Coupling of Aromatic Diamines and Alcohols Catalyzed by Cobalt. ACS Catal. 2017, 7, 7456–7460. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Ermolenko, L.; Dean, W.A.; Al-Mourabit, A. Benzazoles from Aliphatic Amines and o-Amino/Mercaptan/Hydroxyanilines: Elemental Sulfur as a Highly Efficient and Traceless Oxidizing Agent. Org. Lett. 2012, 14, 5948–5951. [Google Scholar] [CrossRef] [PubMed]
- Dhanalakshmi, P.; Thimmarayaperumal, S.; Shanmugam, S. Metal Catalyst Free One-Pot Synthesis of 2-Arylbenzimidazoles from α-Aroylketene Dithioacetals. RSC Adv. 2014, 4, 12028–12036. [Google Scholar] [CrossRef]
- Liu, X.; Cao, H.; Bie, F.; Yan, P.; Han, Y. C A N Bond Formation and Cyclization: A Straightforward and Metal-Free Synthesis of N -1-Alkyl-2-Unsubstituted Benzimidazoles. Tetrahedron Lett. 2019, 60, 1057–1059. [Google Scholar] [CrossRef]
- Mostafavi, H.; Islami, M.R.; Ghonchepour, E.; Tikdari, A.M. Synthesis of 1H-1,3-Benzimidazoles, Benzothiazoles and 3H-Imidazo[4,5-c]Pyridine Using DMF in the Presence of HMDS as a Reagent under the Transition-Metal-Free Condition. Chem. Pap. 2018, 72, 2973–2978. [Google Scholar] [CrossRef]
- Jain, P.; Tiwari, M. Synthesis and Antimicrobial Activity of Some Benzimidazole and 2-Methylbenzimidazole Derivatives. Asian J. Chem. 2017, 29, 838–842. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Zhou, J.; Fang, Q.S.; Chen, L.; Song, Z.B. Chemoselective Synthesis of 1,2-Disubstituted Benzimidazoles in Lactic Acid without Additive. Chem. Pap. 2016, 70, 1293–1298. [Google Scholar] [CrossRef]
- Khunt, M.D.; Kotadiya, V.C.; Viradiya, D.J.; Baria, B.H. Easy, Simplistic and Green Synthesis of Various Benzimidazole and Benzoxazole Derivatives Using PEG 400 as a Green Solvent. Int. Lett. Chem. Phys. Astron. 2014, 25, 61–68. [Google Scholar] [CrossRef]
- Kathirvelan, D.; Yuvaraj, P.; Babu, K.; Nagarajan, A.S.; Reddy, B.S.R. A Green Synthesis of Benzimidazoles Benzimidazole Moieties Are a Very Important Class of Heterocyclic Compounds That Have Many Applications in Pharmaceutical Chemistry. Indian J. Chem. 2013, 52, 1152–1156. [Google Scholar] [CrossRef]
- Kidwai, M.; Jahan, A.; Bhatnagar, D. Polyethylene Glycol: A Recyclable Solvent System for the Synthesis of Benzimidazole Derivatives Using CAN as Catalyst. J. Chem. Sci. 2010, 122, 607–612. [Google Scholar] [CrossRef]
- Azarifar, D.; Pirhayati, M.; Maleki, B.; Sanginabadi, M.; Yami, R.N. Acetic Acid-Promoted Condensation of o-Phenylenediamine with Aldehydes into 2-Aryl-1-(Arylmethyl)-1H-Benzimidazoles under Microwave Irradiation. J. Serbian Chem. Soc. 2010, 75, 1181–1189. [Google Scholar] [CrossRef]
- Khose, V.N.; John, M.E.; Pandey, A.D.; Karnik, A.V. Chiral Benzimidazoles and Their Applications in Stereodiscrimination Processes. Tetrahedron Asymmetry 2017, 28, 1233–1289. [Google Scholar] [CrossRef]
- Said, N.R.; Mustakim, M.A.; Sani, N.N.M.; Baharin, S.N.A. Heck Reaction Using Palladium-Benzimidazole Catalyst: Synthesis, Characterisation and Catalytic Activity. IOP Conf. Ser. Mater. Sci. Eng. 2018, 458, 012019. [Google Scholar] [CrossRef]
- Günnaz, S.; Gökçe, A.G.; Türkmen, H. Synthesis of Bimetallic Complexes Bridged by 2,6-Bis(Benzimidazol-2-Yl) Pyridine Derivatives and Their Catalytic Properties in Transfer Hydrogenation. Dalt. Trans. 2018, 47, 17317–17328. [Google Scholar] [CrossRef]
- Horak, E.; Kassal, P.; Murković Steinberg, I. Benzimidazole as a Structural Unit in Fluorescent Chemical Sensors: The Hidden Properties of a Multifunctional Heterocyclic Scaffold. Supramol. Chem. 2018, 30, 838–857. [Google Scholar] [CrossRef]
- Agarwal, R.A.; Aijaz, A.; Ahmad, M.; Sañudo, E.C.; Xu, Q.; Bharadwaj, P.K. Two New Coordination Polymers with Co(II) and Mn(II): Selective Gas Adsorption and Magnetic Studies. Cryst. Growth Des. 2012, 12, 2999–3005. [Google Scholar] [CrossRef]
- Nath, I.; Chakraborty, J.; Verpoort, F. Metal Organic Frameworks Mimicking Natural Enzymes: A Structural and Functional Analogy. Chem. Soc. Rev. 2016, 45, 4127–4170. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Wei, B.; Liang, T.; Yang, X.; Wu, Y. Anhydrous Proton Conduction in Liquid Crystals Containing Benzimidazole Moieties. RSC Adv. 2016, 6, 34038–34042. [Google Scholar] [CrossRef]
- Yuan, S.; Guo, X.; Aili, D.; Pan, C.; Li, Q.; Fang, J. Poly(Imide Benzimidazole)s for High Temperature Polymer Electrolyte Membrane Fuel Cells. J. Membr. Sci. 2014, 454, 351–358. [Google Scholar] [CrossRef]
- Jiang, J.-J.; Pan, M.; Liu, J.-M.; Wang, W.; Su, C.-Y. Assembly of Robust and Porous Hydrogen-Bonded Coordination Frameworks: Isomorphism, Polymorphism, and Selective Adsorption. Inorg. Chem. 2010, 49, 10166–10173. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Dong, J.; Zhang, Z.; Zhang, Q.; Lin, J. Structure and Properties of Polyimide Fibers Containing Benzimidazole and Amide Units. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 183–191. [Google Scholar] [CrossRef]
- Nabavian, S.; Naderi, R.; Asadi, N. Determination of Optimum Concentration of Benzimidazole Improving the Cathodic Disbonding Resistance of Epoxy Coating. Coatings 2018, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, H.M.S.; Bhowmik, S.; Benedictus, R. Performance Evaluation of Polybenzimidazole Coating for Aerospace Application. Prog. Org. Coat. 2017, 105, 190–199. [Google Scholar] [CrossRef]
- VijayaKumar, V.; Ramesh Kumar, C.; Suresh, A.; Jayalakshmi, S.; Kamachi Mudali, U.; Sivaraman, N. Evaluation of Polybenzimidazole-Based Polymers for the Removal of Uranium, Thorium and Palladium from Aqueous Medium. R. Soc. Open Sci. 2018, 5, 171701. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Song, G. Characterizing Thermal Protective Fabrics of Firefighters’ Clothing in Hot Surface Contact. J. Ind. Text. 2018, 47, 622–639. [Google Scholar] [CrossRef]
- Akhtar, F.H.; Kumar, M.; Villalobos, L.F.; Vovusha, H.; Shevate, R.; Schwingenschlögl, U.; Peinemann, K.V. Polybenzimidazole-Based Mixed Membranes with Exceptionally High Water Vapor Permeability and Selectivity. J. Mater. Chem. A 2017, 5, 21807–21819. [Google Scholar] [CrossRef] [Green Version]
- Muthuraja, A.; Kalainathan, S. A Study on Growth, Optical, Mechanical, and NLO Properties of 2-Mercaptobenzimidazole, 2-Phenylbenzimidazole and 2-Hydroxy Benzimidazole Single Crystals: A Comparative Investigation. Mater. Technol. 2017, 32, 335–348. [Google Scholar] [CrossRef]
- Tayade, R.P.; Sekar, N. Benzimidazole-Thiazole Based NLOphoric Styryl Dyes with Solid State Emission—Synthesis, Photophysical, Hyperpolarizability and TD-DFT Studies. Dye. Pigment. 2016, 128, 111–123. [Google Scholar] [CrossRef]
- Gupta, P.K. Toxicity of Fungicides, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Ermler, S.; Scholze, M.; Kortenkamp, A. Seven Benzimidazole Pesticides Combined at Sub-Threshold Levels Induce Micronuclei in Vitro. Mutagenesis 2013, 28, 417–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eldebss, T.M.A.; Farag, A.M.; Shamy, A.Y.M. Synthesis of Some Benzimidazole-Based Heterocycles and Their Application as Copper Corrosion Inhibitors. J. Heterocycl. Chem. 2019, 56, 371–390. [Google Scholar] [CrossRef]
- Anastasiou, E.; Lorentz, K.O.; Stein, G.J.; Mitchell, P.D. Prehistoric Schistosomiasis Parasite Found in the Middle East. Lancet Infect. Dis. 2014, 14, 553–554. [Google Scholar] [CrossRef] [PubMed]
- Saltan, G.M.; Dinçalp, H.; Kiran, M.; Zafer, C.; Erbaş, S.Ç. Novel Organic Dyes Based on Phenyl-Substituted Benzimidazole for Dye Sensitized Solar Cells. Mater. Chem. Phys. 2015, 163, 387–393. [Google Scholar] [CrossRef]
- Mamedov, V.A.; Khafizova, E.A.; Syakaev, V.V.; Gubaidullin, A.T.; Samigullina, A.I.; Algaeva, N.E.; Latypov, S.K. The Rearrangement of 1H,1′H-Spiro[Quinoline-4,2′-Quinoxaline]-2,3′ (3H,4′H)-Diones—A New and Efficient Method for the Synthesis of 4-(Benzimidazol-2-Yl)Quinolin-2(1H)-Ones. Tetrahedron 2018, 74, 6544–6557. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, C.; Qiu, P.; Li, X.; Wang, Q.; Chen, J.; Ma, D. New Benzimidazole-Based Bipolar Hosts: Highly Efficient Phosphorescent and Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes Employing the Same Device Structure. ACS Appl. Mater. Interfaces 2016, 8, 2635–2643. [Google Scholar] [CrossRef]
- Giovine, A.; Muraglia, M.; Florio, M.A.; Rosato, A.; Corbo, F.; Franchini, C.; Musio, B.; Degennaro, L.; Luisi, R. Synthesis of Functionalized Arylaziridines as Potential Antimicrobial Agents. Molecules 2014, 19, 11505–11519. [Google Scholar] [CrossRef] [Green Version]
- Šindelář, Z.; Kopel, P. Bis(Benzimidazole) Complexes, Synthesis and Their Biological Properties: A Perspective. Inorganics 2023, 11, 113. [Google Scholar] [CrossRef]
- Mirzaeian, F.; Eshghi, H. Synthesis of Benzimidazoles by Ni-Catalyzed Hydrogen Transfer Reduction of Nitroarenes with Alcohols. In Proceedings of the 21st ICS International Chemistry Congres, Mashhad, Iran, 26–28 July 2022; Available online: https://profdoc.um.ac.ir/paper-abstract-1091156.html (accessed on 1 May 2023).
- Haddadi, M.H. Benzimidazole Derivatives: A Versatile Scaffold for Drug Development against Helicobacter Pylori-Related Diseases. Fundam. Clin. Pharmacol. 2022, 36, 930–943. [Google Scholar] [CrossRef]
- Haque, R.A.; Iqbal, M.A.; Asekunowo, P.; Majid, A.M.S.A.; Khadeer Ahamed, M.B.; Umar, M.I.; Al-Rawi, S.S.; Al-Suede, F.S.R. Synthesis, Structure, Anticancer, and Antioxidant Activity of Para-Xylyl Linked Bis-Benzimidazolium Salts and Respective Dinuclear Ag(I) N-Heterocyclic Carbene Complexes (Part-II). Med. Chem. Res. 2013, 22, 4663–4676. [Google Scholar] [CrossRef]
- Nile, S.H.; Kumar, B.; Park, S.W. In Vitro Evaluation of Selected Benzimidazole Derivatives as an Antioxidant and Xanthine Oxidase Inhibitors. Chem. Biol. Drug Des. 2013, 82, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.K.; Khuntia, A.; Yellasubbaiah, N.; Ayyanna, C.; Naga Sudha, B.; Harika, M.S. Design, Synthesis of Novel Azo Derivatives of Benzimidazole as Potent Antibacterial and Anti Tubercular Agents. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 646–651. [Google Scholar] [CrossRef]
- Iqbal, H.; Verma, A.K.; Yadav, P.; Alam, S.; Mishra, D.; Khan, F.; Hanif, K.; Negi, A.S.; Chanda, D. Antihypertensive Effect of a Novel Angiotensin II Receptor Blocker Fluorophenyl Benzimidazole: Contribution of CGMP, Voltage-Dependent Calcium Channels, and BK Ca Channels to Vasorelaxant Mechanisms. Front. Pharmacol. 2021, 12, 611109. [Google Scholar] [CrossRef]
- Bhagat, P.K.; Raj, R.; Thakur, D.N. Preparation and Characterization of Some Bivalent Metal Complexes with Bis [2-(2ethyledenebenzimidazolyl) Thiocarbohydrazide] and Studies of Their Antiamoebic and Antihelminthic Activities. Int. J. Chem. Environ. Sci. 2023, 4, 49–53. [Google Scholar] [CrossRef]
- Hernández-Romero, D.; Rosete-Luna, S.; López-Monteon, A.; Chávez-Piña, A.; Pérez-Hernández, N.; Marroquín-Flores, J.; Cruz-Navarro, A.; Pesado-Gómez, G.; Morales-Morales, D.; Colorado-Peralta, R. First-Row Transition Metal Compounds Containing Benzimidazole Ligands: An Overview of Their Anticancer and Antitumor Activity. Coord. Chem. Rev. 2021, 439, 213930. [Google Scholar] [CrossRef]
- Hu, J.; Cao, T.; Yuan, B.; Guo, Y.; Zhang, J.; Zhao, X.; Hou, H. Benzimidazole-Quinoline-Based Copper Complexes: Exploration for Their Possible Antitumor Mechanism. Polyhedron 2022, 211, 115563. [Google Scholar] [CrossRef]
- Son, D.-S.; Lee, E.-S.; Adunyah, S.E. The Antitumor Potentials of Benzimidazole Anthelmintics as Repurposing Drugs. Immune Netw. 2020, 20, e29. Available online: https://immunenetwork.org/DOIx.php?id=10.4110/in.2020.20.e29 (accessed on 1 May 2023). [CrossRef]
- Dziwornu, G.A.; Coertzen, D.; Leshabane, M.; Korkor, C.M.; Cloete, C.K.; Njoroge, M.; Gibhard, L.; Lawrence, N.; Reader, J.; van der Watt, M. Antimalarial Benzimidazole Derivatives Incorporating Phenolic Mannich Base Side Chains Inhibit Microtubule and Hemozoin Formation: Structure–Activity Relationship and in Vivo Oral Efficacy Studies. J. Med. Chem. 2021, 64, 5198–5215. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Sinha, D.; Sanjay, K.; Singh, V.K. Novel Benzimidazole Analogs as Inhibitors of EGFR Tyrosine Kinase. Chem. Biol. Drug Des. 2012, 80, 625–630. [Google Scholar] [CrossRef]
- Yoon, Y.K.; Ali, M.A.; Wei, A.C.; Choon, T.S.; Khaw, K.Y.; Murugaiyah, V.; Osman, H.; Masand, V.H. Synthesis, Characterization, and Molecular Docking Analysis of Novel Benzimidazole Derivatives as Cholinesterase Inhibitors. Bioorg. Chem. 2013, 49, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wu, C.F.; Li, X.; Wu, G.S.; Xie, S.; Hu, Q.N.; Deng, Z.; Zhu, M.X.; Luo, H.R.; Hong, X. Synthesis, Biological Evaluation and Molecular Modeling of Substituted 2-Aminobenzimidazoles as Novel Inhibitors of Acetylcholinesterase and Butyrylcholinesterase. Bioorg. Med. Chem. 2013, 21, 4218–4224. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, L.; Virkel, G.; Elissondo, C.; Canton, C.; Canevari, J.; Murno, G.; Denegri, G.; Lanusse, C.; Alvarez, L. A Pharmacology-Based Comparison of the Activity of Albendazole and Flubendazole against Echinococcus Granulosus Metacestode in Sheep. Acta Trop. 2013, 127, 216–225. [Google Scholar] [CrossRef]
- Pérez-Villanueva, J.; Hernández-Campos, A.; Yépez-Mulia, L.; Méndez-Cuesta, C.; Méndez-Lucio, O.; Hernández-Luis, F.; Castillo, R. Synthesis and antiprotozoal activity of novel 2-{[2-(1H-imidazol-1-yl)ethyl]sulfanyl}-1H-benzimidazole derivatives. Bioorganic Med. Chem. Lett. 2013, 23, 4221–4224. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, B.; Sharma, D.; Kumar, P. Benzimidazole: A Medicinally Important Heterocyclic Moiety. Med. Chem. Res. 2012, 21, 269–283. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, X.; Xiong, S.; Xiong, R.; Liu, J.; Zou, L.; Lei, X.; Cao, X.; Xie, Z.; Chen, Y.; et al. Design, Synthesis and Biological Evaluation of Chrysin Benzimidazole Derivatives as Potential Anticancer Agents. Nat. Prod. Res. 2018, 32, 2900–2909. [Google Scholar] [CrossRef]
- Morais, G.R.; Palma, E.; Marques, F.; Gano, L.; Oliveira, M.C.; Abrunhosa, A.; Miranda, H.V.; Outeiro, T.F.; Santos, I.; Paulo, A. Synthesis and Biological Evaluation of Novel 2-Aryl Benzimidazoles as Chemotherapeutic Agents. J. Heterocycl. Chem. 2017, 54, 255–267. [Google Scholar] [CrossRef]
- Klenc, J.; Raux, E.; Barnes, S.; Sullivan, S.; Duszynska, B.; Bojarski, A.J.; Strekowski, L. Synthesis of 4-Substituted 2-(4-Methylpiperazino) Pyrimidines and Quinazoline Analogs as Serotonin 5-HT 2A Receptor Ligands. J. Heterocycl. Chem. 2009, 46, 1259–1265. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Li, H.; Ji, D.; Li, Y.; Xu, Y.; Zhu, Q. Design, Synthesis and Biological Evaluation of Novel 5-Fluoro-1H-Benzimidazole-4-Carboxamide Derivatives as Potent PARP-1 Inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 4127–4132. [Google Scholar] [CrossRef]
- Onnis, V.; Demurtas, M.; Deplano, A.; Balboni, G.; Baldisserotto, A.; Manfredini, S.; Pacifico, S.; Liekens, S.; Balzarini, J. Design, Synthesis and Evaluation of Antiproliferative Activity of New Benzimidazolehydrazones. Molecules 2016, 21, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Acar Çevik, U.; Sağlık, B.N.; Korkut, B.; Özkay, Y.; Ilgın, S. Antiproliferative, Cytotoxic, and Apoptotic Effects of New Benzimidazole Derivatives Bearing Hydrazone Moiety. J. Heterocycl. Chem. 2018, 55, 138–148. [Google Scholar] [CrossRef]
- Elancheran, R.; Saravanan, K.; Choudhury, B.; Divakar, S.; Kabilan, S.; Ramanathan, M.; Das, B.; Devi, R.; Kotoky, J. Design and Development of Oxobenzimidazoles as Novel Androgen Receptor Antagonists. Med. Chem. Res. 2016, 25, 539–552. [Google Scholar] [CrossRef]
- Renard, J.F.; Lecomte, F.; Hubert, P.; De Leval, X.; Pirotte, B. N-(3-Arylaminopyridin-4-Yl)Alkanesulfonamides as Pyridine Analogs of Nimesulide: Cyclooxygenases Inhibition, Anti-Inflammatory Studies and Insight on Metabolism. Eur. J. Med. Chem. 2014, 74, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Masferrer, J.L.; Zweifel, B.S.; Manning, P.T.; Hauser, S.D.; Leahy, K.M.; Smith, W.G.; Isakson, P.C.; Seibert, K. Selective Inhibition of Inducible Cyclooxygenase 2 in Vivo Is Antiinflammatory and Nonulcerogenic. Proc. Natl. Acad. Sci. USA 1994, 91, 3228–3232. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.G.; Das, N.; Shengule, S.A.; Srivastava, R.S.; Shrivastava, S.K. Synthesis, Characterization, Evaluation and Molecular Dynamics Studies of 5, 6-Diphenyl-1,2,4-triazin-3(2 H)-one Derivatives Bearing 5-Substituted 1,3,4-Oxadiazole as Potential Anti-Inflammatory and Analgesic Agents. Eur. J. Med. Chem. 2015, 101, 81–95. [Google Scholar] [CrossRef]
- Boggu, P.R.; Venkateswararao, E.; Manickam, M.; Kwak, D.; Kim, Y.; Jung, S.H. Exploration of 2-Benzylbenzimidazole Scaffold as Novel Inhibitor of NF-ΚB. Bioorg. Med. Chem. 2016, 24, 1872–1878. [Google Scholar] [CrossRef]
- Khanapur, M.; Pinna, N.K.; Badiger, J. Synthesis and Anti-Inflammatory in Vitro, in Silico, and in Vivo Studies of Flavone Analogues. Med. Chem. Res. 2015, 24, 2656–2669. [Google Scholar] [CrossRef]
- Kim, M.K.; Shin, H.; Park, K.S.; Kim, H.; Park, J.; Kim, K.; Nam, J.; Choo, H.; Chong, Y. Benzimidazole Derivatives as Potent JAK1-Selective Inhibitors. J. Med. Chem. 2015, 58, 7596–7602. [Google Scholar] [CrossRef]
- Banoglu, E.; Çalişkan, B.; Luderer, S.; Eren, G.; Özkan, Y.; Altenhofen, W.; Weinigel, C.; Barz, D.; Gerstmeier, J.; Pergola, C.; et al. Identification of Novel Benzimidazole Derivatives as Inhibitors of Leukotriene Biosynthesis by Virtual Screening Targeting 5-Lipoxygenase- Activating Protein (FLAP). Bioorg. Med. Chem. 2012, 20, 3728–3741. [Google Scholar] [CrossRef]
- Tatani, K.; Hiratochi, M.; Kikuchi, N.; Kuramochi, Y.; Watanabe, S.; Yamauchi, Y.; Itoh, F.; Isaji, M.; Shuto, S. Identification of Adenine and Benzimidazole Nucleosides as Potent Human Concentrative Nucleoside Transporter 2 Inhibitors: Potential Treatment for Hyperuricemia and Gout. J. Med. Chem. 2016, 59, 3719–3731. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Suchomel, J.; Cardozo, M.; Duquette, J.; He, X.; Henne, K.; Hu, Y.L.; Kelly, R.C.; McCarter, J.; McGee, L.R.; et al. Discovery, Optimization, and in Vivo Evaluation of Benzimidazole Derivatives AM-8508 and AM-9635 as Potent and Selective PI3Kδ Inhibitors. J. Med. Chem. 2016, 59, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Marinescu, M. Synthesis of Antimicrobial Benzimidazole–Pyrazole Compounds and Their Biological Activities. Antibiotics 2021, 10, 1002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Z.; Zhao, Z.L.; Zhou, C.H. Recent Advance in Oxazole-Based Medicinal Chemistry. Eur. J. Med. Chem. 2018, 144, 444–492. [Google Scholar] [CrossRef]
- Deepthi, S.B.; Ramesh, P.; Trivedi, R.; Buddana, S.K.; Prakasham, R.S. Carbohydrate Triazole Tethered 2-Pyridyl-Benzimidazole Ligands: Synthesis of Their Palladium (II) Complexes and Antimicrobial Activities. Inorganica Chim. Acta 2015, 435, 200–205. [Google Scholar] [CrossRef]
- Siddiqi, Z.A.; Shahid, A.M.; Khalid, M.; Sharma, P.K.; Siddique, A. Spectroscopic, Luminescence, Electrochemical and Antimicrobial Studies of Lanthanide Complexes of Bis-Benzimidazole Derived Ligands. J. Mol. Struct. 2013, 1037, 402–411. [Google Scholar] [CrossRef]
- Kumar, K.; Awasthi, D.; Lee, S.Y.; Cummings, J.E.; Knudson, S.E.; Slayden, R.A.; Ojima, I. Benzimidazole-Based Antibacterial Agents against Francisella Tularensis. Bioorg. Med. Chem. 2013, 21, 3318–3326. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.Z.; Damu, G.L.V.; Cai, G.X.; Zhou, C.H. Design, Synthesis and Antimicrobial Evaluation of Novel Benzimidazole Type of Fluconazole Analogues and Their Synergistic Effects with Chloromycin, Norfloxacin and Fluconazole. Eur. J. Med. Chem. 2013, 64, 329–344. [Google Scholar] [CrossRef]
- Sharma, U.K.; Sood, S.; Sharma, N.; Rahi, P.; Kumar, R.; Sinha, A.K.; Gulati, A. Synthesis and SAR Investigation of Natural Phenylpropene-Derived Methoxylated Cinnamaldehydes and Their Novel Schiff Bases as Potent Antimicrobial and Antioxidant Agents. Med. Chem. Res. 2013, 22, 5129–5140. [Google Scholar] [CrossRef]
- Lam, T.; Hilgers, M.T.; Cunningham, M.L.; Kwan, B.P.; Nelson, K.J.; Brown-Driver, V.; Ong, V.; Trzoss, M.; Hough, G.; Shaw, K.J.; et al. Structure-Based Design of New Dihydrofolate Reductase Antibacterial Agents: 7-(Benzimidazol-1-Yl)-2,4-Diaminoquinazolines. J. Med. Chem. 2014, 57, 651–668. [Google Scholar] [CrossRef]
- Ranjith, P.K.; Rajeesh, P.; Haridas, K.R.; Susanta, N.K.; Guru Row, T.N.; Rishikesan, R.; Suchetha Kumari, N. Design and Synthesis of Positional Isomers of 5 and 6-Bromo-1-[(Phenyl) Sulfonyl]-2-[(4-Nitrophenoxy)Methyl]-1H-Benzimidazoles as Possible Antimicrobial and Antitubercular Agents. Bioorg. Med. Chem. Lett. 2013, 23, 5228–5234. [Google Scholar] [CrossRef]
- Savaliya, P.P.; Akbari, V.K.; Modi, J.A.; Patel, K.C. Synthesis, Characterization, and Antimicrobial Screening of Some Mannich Base Sydnone Derivatives. Med. Chem. Res. 2013, 22, 5789–5797. [Google Scholar] [CrossRef]
- Raviglione, M.; Marais, B.; Floyd, K.; Lönnroth, K.; Getahun, H.; Migliori, G.B.; Harries, A.D.; Nunn, P.; Lienhardt, C.; Graham, S.; et al. Scaling up Interventions to Achieve Global Tuberculosis Control: Progress and New Developments. Lancet 2012, 379, 1902–1913. [Google Scholar] [CrossRef] [PubMed]
- Brossier, F.; Boudinet, M.; Jarlier, V.; Petrella, S.; Sougakoff, W. Comparative Study of Enzymatic Activities of New KatG Mutants from Low-and High-Level Isoniazid-Resistant Clinical Isolates of Mycobacterium Tuberculosis. Tuberculosis 2016, 100, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, K.; Surana, S.; Jain, P.; Patel, H.M. Mycobacterium Tuberculosis (MTB) GyrB Inhibitors: An Attractive Approach for Developing Novel Drugs against TB. Eur. J. Med. Chem. 2016, 124, 160–185. [Google Scholar] [CrossRef]
- Chandrasekera, N.S.; Berube, B.J.; Shetye, G.; Chettiar, S.; O’Malley, T.; Manning, A.; Flint, L.; Awasthi, D.; Ioerger, T.R.; Sacchettini, J.; et al. Improved Phenoxyalkylbenzimidazoles with Activity against Mycobacterium Tuberculosis Appear to Target QcrB. ACS Infect. Dis. 2017, 3, 898–916. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.K.; Ali, M.A.; Wei, A.C.; Choon, T.S.; Ismail, R. Synthesis and Evaluation of Antimycobacterial Activity of New Benzimidazole Aminoesters. Eur. J. Med. Chem. 2015, 93, 614–624. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lutkenhaus, J. Analysis of FtsZ Assembly by Light Scattering and Determination of the Role of Divalent Metal Cations. J. Bacteriol. 1999, 181, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, D.; Kumar, K.; Knudson, S.E.; Slayden, R.A.; Ojima, I. SAR Studies on Trisubstituted Benzimidazoles as Inhibitors of Mtb FtsZ for the Development of Novel Antitubercular Agents. J. Med. Chem. 2013, 56, 9756–9770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, K.; Awasthi, D.; Lee, S.Y.; Zanardi, I.; Ruzsicska, B.; Knudson, S.; Tonge, P.J.; Slayden, R.A.; Ojima, I. Novel Trisubstituted Benzimidazoles, Targeting Mtb FtsZ, as a New Class of Antitubercular Agents. J. Med. Chem. 2011, 54, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Park, B.; Awasthi, D.; Chowdhury, S.R.; Melief, E.H.; Kumar, K.; Knudson, S.E.; Slayden, R.A.; Ojima, I. Design, Synthesis and Evaluation of Novel 2,5,6-Trisubstituted Benzimidazoles Targeting FtsZ as Antitubercular Agents. Bioorg. Med. Chem. 2014, 22, 2602–2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobis, K.; Foks, H.; Bojanowski, K.; Augustynowicz-Kopeć, E.; Napiórkowska, A. Synthesis of Novel 3-Cyclohexylpropanoic Acid-Derived Nitrogen Heterocyclic Compounds and Their Evaluation for Tuberculostatic Activity. Bioorg. Med. Chem. 2012, 20, 137–144. [Google Scholar] [CrossRef]
- Gobis, K.; Foks, H.; Serocki, M.; Augustynowicz-Kopeć, E.; Napiórkowska, A. Synthesis and Evaluation of in Vitro Antimycobacterial Activity of Novel 1H-Benzo[d]Imidazole Derivatives and Analogues. Eur. J. Med. Chem. 2015, 89, 13–20. [Google Scholar] [CrossRef]
- Vinet, L.; Zhedanov, A. A “missing” Family of Classical Orthogonal Polynomials. J. Phys. A Math. Theor. 2011, 44, 1–3. [Google Scholar] [CrossRef]
- Araujo, D.M.L.; Maste, M.M.; Alegaon, S.; Saxena, A. Synthesis, Antitubercular Evaluation and Docking Studies Of Novel Benzimidazole Analogues. Int. J. Pharm. Sci. Res. 2018, 12, 3696–3704. [Google Scholar]
- Hata, Y.; De Mieri, M.; Ebrahimi, S.N.; Mokoka, T.; Fouche, G.; Kaiser, M.; Brun, R.; Potterat, O.; Hamburger, M. Identification of Two New Phenathrenones and a Saponin as Antiprotozoal Constituents of Drypetes Gerrardii. Phytochem. Lett. 2014, 10, cxxxiii–cxl. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Rzeppa, S.; Kaiser, M.; Brun, R. Larrea Tridentata—Absolute Configuration of Its Epoxylignans and Investigations on Its Antiprotozoal Activity. Phytochem. Lett. 2012, 5, 632–638. [Google Scholar] [CrossRef]
- Molyneux, D.H. Neglected Tropical Diseases: Now More than Just ’Other Diseases’- the Post-2015 Agenda. Int. Health 2014, 6, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Karaaslan, C.; Kaiser, M.; Brun, R.; Göker, H. Synthesis and Potent Antiprotozoal Activity of Mono/Di Amidino 2-Anilinobenzimidazoles versus Plasmodium Falciparum and Trypanosoma Brucei Rhodesiense. Bioorg. Med. Chem. 2016, 24, 4038–4044. [Google Scholar] [CrossRef]
- Keurulainen, L.; Siiskonen, A.; Nasereddin, A.; Kopelyanskiy, D.; Sacerdoti-Sierra, N.; Leino, T.O.; Tammela, P.; Yli-Kauhaluoma, J.; Jaffe, C.L.; Kiuru, P. Synthesis and Biological Evaluation of 2-Arylbenzimidazoles Targeting Leishmania Donovani. Bioorg. Med. Chem. Lett. 2015, 25, 1933–1937. [Google Scholar] [CrossRef]
- Soria-Arteche, O.; Hernández-Campos, A.; Yépez-Mulia, L.; Trejo-Soto, P.J.; Hernández-Luis, F.; Gres-Molina, J.; Maldonado, L.A.; Castillo, R. Synthesis and Antiprotozoal Activity of Nitazoxanide-N-Methylbenzimidazole Hybrids. Bioorg. Med. Chem. Lett. 2013, 23, 6838–6841. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.; Ismail, N.H.; Jamil, W.; Rashwan, H.; Kashif, S.M.; Sain, A.A.; Adenan, M.I.; Anouar, E.H.; Ali, M.; Rahim, F.; et al. Synthesis of Novel Derivatives of 4-Methylbenzimidazole and Evaluation of Their Biological Activities. Eur. J. Med. Chem. 2014, 84, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Hameed, P.S.; Srivastava, A.; Shanbhag, G.; Morayya, S.; Rautela, N.; Awasthy, D.; Kavanagh, S.; Bharath, S.; Reddy, J. N-Aryl-2-Aminobenzimidazoles: Novel, Efficacious, Antimalarial Lead Compounds. J. Med. Chem. 2014, 57, 6642–6652. [Google Scholar] [CrossRef] [PubMed]
- Saify, Z.S.; Azim, M.K.; Ahmad, W.; Nisa, M.; Goldberg, D.E.; Hussain, S.A.; Akhtar, S.; Akram, A.; Arayne, A.; Oksman, A.; et al. New Benzimidazole Derivatives as Antiplasmodial Agents and Plasmepsin Inhibitors: Synthesis and Analysis of Structure-Activity Relationships. Bioorg. Med. Chem. Lett. 2012, 22, 1282–1286. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, M.; Avashthi, G.; Gacem, A.; Alqahtani, M.S.; Park, H.-K.; Jeon, B.-H. A Review of Approaches to the Metallic and Non-Metallic Synthesis of Benzimidazole (BnZ) and Their Derivatives for Biological Efficacy. Molecules 2023, 28, 5490. https://doi.org/10.3390/molecules28145490
Patel M, Avashthi G, Gacem A, Alqahtani MS, Park H-K, Jeon B-H. A Review of Approaches to the Metallic and Non-Metallic Synthesis of Benzimidazole (BnZ) and Their Derivatives for Biological Efficacy. Molecules. 2023; 28(14):5490. https://doi.org/10.3390/molecules28145490
Chicago/Turabian StylePatel, Muhammad, Gopal Avashthi, Amel Gacem, Mohammed S. Alqahtani, Hyun-Kyung Park, and Byong-Hun Jeon. 2023. "A Review of Approaches to the Metallic and Non-Metallic Synthesis of Benzimidazole (BnZ) and Their Derivatives for Biological Efficacy" Molecules 28, no. 14: 5490. https://doi.org/10.3390/molecules28145490
APA StylePatel, M., Avashthi, G., Gacem, A., Alqahtani, M. S., Park, H. -K., & Jeon, B. -H. (2023). A Review of Approaches to the Metallic and Non-Metallic Synthesis of Benzimidazole (BnZ) and Their Derivatives for Biological Efficacy. Molecules, 28(14), 5490. https://doi.org/10.3390/molecules28145490