Oxygenation of Newborns
Abstract
:1. Introduction
2. Methods and Materials
3. Results
3.1. Oxygenation in the Delivery Room
3.2. Oxygenation beyond the Delivery Room
3.3. Present Practice
3.4. New Technology
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saugstad, O.D.; Oei, J.L.; Lakshminrusimha, S.; Vento, M. Oxygen therapy of the newborn from molecular understanding to clinical practice. Pediatr. Res. 2019, 85, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Andresen, J.H.; Saugstad, O.D. Oxygen metabolism and oxygenation of the newborn. Semin. Fetal Neonatal Med. 2020, 25, 101078. [Google Scholar] [CrossRef] [PubMed]
- Mancardi, D.; Ottolenghi, S.; Attanasio, U.; Tocchetti, C.G.; Paroni, R.; Pagliaro, P.; Samaja, M. Janus, or the inevitable battle between too much and too little oxygen. Antioxid. Redox Signal. 2022. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Mathias, M.; Chang, J.; Perez, M.; Saugstad, O. Supplemental Oxygen in the Newborn: Historical Perspective and Current Trends. Antioxidants 2021, 25, 1879. [Google Scholar] [CrossRef]
- Apgar, V. A proposal for a new method of evaluation of the newborn infant. Curr. Res. Anesth. Analg. 1953, 32, 260–267. [Google Scholar] [CrossRef]
- Kerber, R.E.; Ornato, J.P.; Brown, D.D.; Chameides, L.; Chandra, N.C.; Cummins, R.O.; Hazinski, M.F.; Melker, R.J.; Weaver, W.D.; Abramson, N.S.; et al. Guidelines for cardiopulmonary resuscitation and emergency cardiac care. Emergency Cardiac Care Committee and Subcommittees, American Heart Association. Part VII. Neonatal resuscitation. JAMA 1992, 268, 2276–2281. [Google Scholar]
- World Health Organization. Basic Newborn Resuscitation: A Practical Guide; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Wyllie, J.; Perlman, J.M.; Kattwinkel, J.; Atkins, D.L.; Chameides, L.; Goldsmith, J.P.; Guinsburg, R.; Hazinski, A.F.; Morley, C.; Richmond, S.; et al. Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2010, 81 (Suppl. S1), e260–e287. [Google Scholar] [CrossRef]
- Saugstad, O.D.; Aasen, A.O. Plasma hypoxanthine concentrations in pigs. A prognostic aid in hypoxia. Eur. Surg. Res. 1980, 12, 123–129. [Google Scholar] [CrossRef]
- Perez, M.; Robbins, M.E.; Revhaug, C.; Saugstad, O.D. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic. Biol. Med. 2019, 142, 61–72. [Google Scholar] [CrossRef]
- Saugstad, O.D.; Ramji, S.; Soll, R.F.; Vento, M. Resuscitation of newborn infants with 21% or 100% oxygen: An updated systematic review and meta-analysis. Neonatology 2008, 94, 176–182. [Google Scholar] [CrossRef]
- Welsford, M.; Nishiyama, C.; Shortt, C.; Isayama, T.; Dawson, J.A.; Weiner, G.; Roehr, C.C.; Wyckoff, M.H.; Rabi, Y. Room Air for Initiating Term Newborn Resuscitation: A Systematic Review With Meta-analysis. Pediatrics 2019, 143, e20181825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dotinga, B.M.; Solberg, R.; Saugstad, O.D.; Bos, A.F.; Kooi, E.M.W. Splanchnic oxygen saturation during reoxygenation with 21% or 100% O2 in newborn piglets. Pediatr. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Oei, J.L.; Saugstad, O.D.; Lui, K.; Wright, I.M.; Smyth, J.P.; Craven, P.; Wang, Y.A.; McMullan, R.; Coates, E.; Ward, M.; et al. Targeted Oxygen in the Resuscitation of Preterm Infants, a Randomized Clinical Trial. Pediatrics 2017, 139, e20161452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oei, J.L.; Vento, M.; Rabi, Y.; Wright, I.; Finer, N.; Rich, W.; Kapadia, V.; Aune, D.; Rook, D.; Tarnow-Mordi, W.; et al. Higher or lower oxygen for delivery room resuscitation of preterm infants below 28 completed weeks gestation: A meta-analysis. Arch. Dis. Child.-Fetal Neonatal Ed. 2017, 102, F24–F30. [Google Scholar] [CrossRef]
- Oei, J.L.; Kapadia, V.; Rabi, Y.; Saugstad, O.D.; Rook, D.; Vermeulen, M.J.; Boronat, N.; Thamrin, V.; Tarnow-Mordi, W.; Smyth, J.; et al. Neurodevelopmental outcomes of preterm infants after randomisation to initial resuscitation with lower (FiO2 < 0.3) or higher (FiO2 > 0.6) initial oxygen levels. An individual patient meta-analysis. Arch. Dis. Child.-Fetal Neonatal Ed. 2021. [Google Scholar] [CrossRef]
- Vento, M.; Saugstad, O.D. Targeting Oxygen in Term and Preterm Infants Starting at Birth. Clin. Perinatol. 2019, 46, 459–473. [Google Scholar] [CrossRef]
- Saugstad, O.D.; Kapadia, V.; Oei, J.L. Oxygen in the First Minutes of Life in Very Preterm Infants. Neonatology 2021, 118, 218–224. [Google Scholar] [CrossRef]
- Gottimukkala, S.B.; Sotiropoulos, J.X.; Lorente-Pozo, S.; Monti Sharma, A.; Vento, M.; Saugstad, O.D.; Oei, J.L. Oxygen saturation (SpO2) targeting for newborn infants at delivery: Are we reaching for an impossible unknown? Semin. Fetal Neonatal Med. 2021, 26, 101220. [Google Scholar] [CrossRef]
- Kapadia, V.; Oei, J.L.; Finer, N.; Rich, W.; Rabi, Y.; Wright, I.M.; Rook, D.; Vermeulen, M.J.; Tarnow-Mordi, W.O.; Smyth, J.P.; et al. Outcomes of delivery room resuscitation of bradycardic preterm infants: A retrospective cohort study of randomised trials of high vs. low initial oxygen concentration and an individual patient data analysis. Resuscitation 2021, 167, 209–217. [Google Scholar] [CrossRef]
- Saugstad, O.D.; Aune, D. Optimal oxygenation of extremely low birth weight infants: A meta-analysis and systematic review of the oxygen saturation target studies. Neonatology 2014, 105, 55–63. [Google Scholar] [CrossRef]
- Manja, V.; Lakshminrusimha, S.; Cook, D.J. Oxygen saturation target range for extremely preterm infants: A systematic review and meta-analysis. JAMA Pediatr. 2015, 169, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Askie, L.M. Meta-analysis of Oxygenation Saturation Targeting Trials: Do Infant Subgroups Matter? Clin. Perinatol. 2019, 46, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome—2019 Update. Neonatology 2019, 115, 432–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotiropoulos, J.X.; Kapadia, V.; Vento, M.; Rabi, Y.; Saugstad, O.D.; Kumar, R.K.; Schmölzer, G.M.; Zhang, H.; Yuan, Y.; Lim, G.; et al. Oxygen for the delivery room respiratory support of moderate-to-late preterm infants. An international survey of clinical practice from 21 countries. Acta Paediatr. 2021, 110, 3261–3268. [Google Scholar] [CrossRef]
- Koh, J.; Yeo, C.L.; Wright, I.; Lui, K.; Saugstad, O.; Tarnow-Mordi, W.; Smyth, J.; Oei, J.L. The use of oxygen for delivery room resuscitation of newborn infants in non-Western countries. Early Hum. Dev. 2012, 88, 631–635. [Google Scholar] [CrossRef]
- Wilson, A.; Vento, M.; Shah, P.S.; Saugstad, O.; Finer, N.; Rich, W.; Morton, R.L.; Rabi, Y.; Tarnow-Mordi, W.; Suzuki, K.; et al. A review of international clinical practice guidelines for the use of oxygen in the delivery room resuscitation of preterm infants. Acta Paediatr. 2018, 107, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Ashish, K.C.; Singhal, N.; Gautam, J.; Rana, N.; Andersson, O. Effect of early versus delayed cord clamping in neonate on heart rate, breathing and oxygen saturation during first 10 minutes of birth—Randomized clinical trial. Matern. Health Neonatol. Perinatol. 2019, 5, 7. [Google Scholar]
- Padilla-Sánchez, C.; Baixauli-Alacreu, S.; Cañada-Martínez, A.J.; Solaz-García, Á.; Alemany-Anchel, M.J.; Vento, M. Delayed vs. Im mediate Cord Clamping Changes Oxygen Saturation and Heart Rate Patterns in the First Minutes after Birth. J. Pediatr. 2020, 227, 149–156.e1. [Google Scholar] [CrossRef]
- Lara-Cantón, I.; Badurdeen, S.; Dekker, J.; Davis, P.; Roberts, C.; Te Pas, A.; Vento, M. Oxygen saturation and heart rate in healthy term and late preterm infants with delayed cord clamping. Pediatr. Res. 2022. [Google Scholar] [CrossRef]
- Dawson, J.A.; Kamlin, C.O.; Vento, M.; Wong, C.; Cole, T.J.; Donath, S.M.; Davis, P.G.; Morley, C.J. Defining the reference range for oxygen saturation for infants after birth. Pediatrics 2010, 125, e1340–e1347. [Google Scholar] [CrossRef] [Green Version]
- Claure, N.; Bancalari, E. New Modes of Respiratory Support for the Premature Infant: Automated Control of Inspired Oxygen Concentration. Clin. Perinatol. 2021, 48, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Singh, B.; El-Naggar, W.; McMillan, D.D. Automated versus manual control of inspired oxygen to target oxygen saturation in preterm infants: A systematic review and meta-analysis. J. Perinatol. 2018, 38, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; McMillan, D. Automated control of fraction of inspired oxygen: Is it time for widespread adoption? Curr. Opin. Pediatr. 2021, 33, 209–216. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saugstad, O.D.; Andresen, J.H. Oxygenation of Newborns. Oxygen 2022, 2, 125-129. https://doi.org/10.3390/oxygen2020011
Saugstad OD, Andresen JH. Oxygenation of Newborns. Oxygen. 2022; 2(2):125-129. https://doi.org/10.3390/oxygen2020011
Chicago/Turabian StyleSaugstad, Ola Didrik, and Jannicke Hanne Andresen. 2022. "Oxygenation of Newborns" Oxygen 2, no. 2: 125-129. https://doi.org/10.3390/oxygen2020011
APA StyleSaugstad, O. D., & Andresen, J. H. (2022). Oxygenation of Newborns. Oxygen, 2(2), 125-129. https://doi.org/10.3390/oxygen2020011