The Expanding Truffle Environment: A Study of the Microbial Dynamics in the Old Productive Site and the New Tuber magnatum Picco Habitat
<p>(<b>A</b>) Location of experimental site in Italy (43°9′20″52 N 11°35′27″24 E); (<b>B</b>) Description of soil characteristics of the study site; satellite images of the study sites in 2020 (<b>C</b>) and in 2022 (<b>D</b>) with respective <span class="html-italic">Old</span> (red squares) and <span class="html-italic">New</span> (blue squares) sampling points.</p> "> Figure 2
<p>Stacked bar chart of the identified OTUs at the phylum level. (<b>A</b>) The percentage of detected fungal phyla; (<b>B</b>) The percentage of detected prokaryotic phyla.</p> "> Figure 3
<p>Alpha diversity boxplots showing species richness, number of reads, and Shannon index for the fungal community for each site (red for <span class="html-italic">New</span> and blue for <span class="html-italic">Old</span>) in different years (<b>A</b>–<b>C</b>). Non-metric multidimensional scaling (NMDS) plots and relative stress level, using Bray–Curtis dissimilarity matrices of fungal community for <span class="html-italic">New</span> site (<b>D</b>) and <span class="html-italic">Old</span> site (<b>E</b>).</p> "> Figure 4
<p>Alpha diversity boxplots showing species richness, number of reads, and Shannon index for the prokaryotic community for each site (red for <span class="html-italic">New</span> and blue for <span class="html-italic">Old</span>) in different years (<b>A</b>–<b>C</b>). Non-metric multidimensional scaling (NMDS) plots and relative stress level, using Bray–Curtis dissimilarity matrices of fungal community for <span class="html-italic">New</span> site (<b>D</b>) and <span class="html-italic">Old</span> site (<b>E</b>).</p> "> Figure 5
<p>(<b>A</b>) Heatmap showing the relative abundance of the 70 most representative fungal <span class="html-italic">taxa</span> for each site in different years. Hierarchical clustering is based on index of association; the volcano plots show the patterns of enrichment and diminishment in the fungal community through the years in the <span class="html-italic">New</span> site (<b>B</b>) and the <span class="html-italic">Old</span> site (<b>C</b>). The dark dots indicate a significant increase on the right and a significant decrease on the left, while empty dots represent <span class="html-italic">taxa</span> with no significant difference in abundance.</p> "> Figure 6
<p>(<b>A</b>) Heatmap showing the relative abundance of the 70 most representative prokaryotic <span class="html-italic">taxa</span> for each site in different years. Hierarchical clustering is based on index of association; the volcano plots show the patterns of enrichment and diminishment in the prokaryotic community through the years in the <span class="html-italic">New</span> site (<b>B</b>) and in the <span class="html-italic">Old</span> site (<b>C</b>). The dark dots indicate a significant increase on the right and a significant decrease on the left, while empty dots represent <span class="html-italic">taxa</span> with no significant difference in abundance.</p> "> Figure 7
<p>Spearman’s rank correlation maps showing the relationships between <span class="html-italic">Tuber</span> genus, fungal trophic groups, and bacteria. Hierarchical clustering is based on Euclidean distance metrics.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design, Soil Sampling, and DNA Extraction
2.3. Bioinformatic Analyses
2.4. Statistical Methods
3. Results
3.1. Alpha and Beta Diversity
3.2. Microbiome Associated with the Expanding Truffle Habitat
3.3. Ecological Dynamics of Mycobiome and Associated Bacterial Consortia
4. Discussion
4.1. Fungal Dynamics in the Expanding Truffle Forest
4.2. Bacterial Dynamics in the Expanding Truffle Forest
4.3. Microbial Relationships of Truffle Mycelium in Expanding Truffle Forests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graziosi, S.; Hall, I.R.; Zambonelli, A. The mysteries of the white truffle: Its biology, ecology and cultivation. Encyclopedia 2022, 2, 1959–1971. [Google Scholar] [CrossRef]
- Peay, K.G. The mutualistic niche: Mycorrhizal symbiosis and community dynamics. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 143–164. [Google Scholar] [CrossRef]
- Gardin, L. I Tartufi Minori in Toscana. In Gli Ambienti Di Crescita Dei Tartufi Marzuolo e Scorzone; Quaderno ARSIA; Regione Toscana: Firenze, Italy, 2005. [Google Scholar]
- Boddy, L.; Büntgen, U.; Egli, S.; Gange, A.C.; Heegaard, E.; Kirk, P.M.; Mohammad, A.; Kauserud, H. Climate variation effects on fungal fruiting. Fungal Ecol. 2014, 10, 20–33. [Google Scholar] [CrossRef]
- Bragato, G.; Marjanović, Ž.S. Soil characteristics for Tuber magnatum. In True Truffle (Tuber spp.) in the World: Soil Ecology, Systematics and Biochemistry; Zambonelli, A., Iotti, M., Murat, C., Eds.; Springer: Cham, Switzerland, 2016; pp. 191–209. [Google Scholar]
- Čejka, T.; Trnka, M.; Büntgen, U. Sustainable cultivation of the white truffle (Tuber magnatum) requires ecological understanding. Mycorrhiza 2023, 33, 291–302. [Google Scholar] [CrossRef]
- Donnini, D.; Gargano, M.L.; Perini, C.; Savino, E.; Murat, C.; Di Piazza, S.; Altobelli, E.; Salerni, E.; Rubini, A.; Rana, G.L.; et al. Wild and Cultivated Mushrooms as a Model of Sustainable Development. Plant Biosyst. 2013, 147, 226–236. [Google Scholar] [CrossRef]
- Büntgen, U.; Latorre, J.; Egli, S.; Martínez-Peña, F. Socio-economic, scientific, and political benefits of mycotourism. Ecosphere 2017, 8, e01870. [Google Scholar] [CrossRef]
- Di Piazza, S.; Cecchi, G.; Rosa, E.; Zotti, M. The Cultivation of Macrofungi. In Encyclopedia of Mycology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 396–404. [Google Scholar] [CrossRef]
- Christopoulos, V.; Psoma, P.; Diamandis, S. Site characteristics of Tuber magnatum in Greece. Acta Mycol. 2013, 48, 27–32. [Google Scholar] [CrossRef]
- Figliuolo, G.; Trupo, G. A realized Tuber magnatum niche in the upper Sinni area (south Italy). Open J. Genet. 2013, 3, 102–110. [Google Scholar] [CrossRef]
- Di Piazza, S.; Donnini, D.; Iotti, M.; Leonardi, M.; Zambonelli, A.; Zotti, M. Chapter 1. Biodiversity and preservation issues of the genus Tuber in the Mediterranean basin. In Biodiversity Hotspot of the Mediterranean Basin; Pullaiah, T., Galli, L., Eds.; Apple Academic Press, Co-Published with CRC Press: Waretown, NJ, USA, 2025; 424p, in production. [Google Scholar]
- Gregori, G.L.; Donnini, D.; Bencivenga, M. Tuber magnatum: Alcuni esempi produttivi di tartufaie coltivate in Italia. In Proceedings of Terzo Congresso Internazionale di Spoleto sul Tartufo. Spoleto, Novembre 2008; Comunità Montana dei Monti Martani Serano e Subasio: Spoleto, Italy, 2010; pp. 25–28. [Google Scholar]
- Salerni, E.; Iotti, M.; Leonardi, P.; Gardin, L.; D’aguanno, M.; Perini, C.; Pacioni, P.; Zambonelli, A. Effects of soil tillage on Tuber magnatum development in natural truffières. Mycorrhiza 2014, 24, 79–87. [Google Scholar] [CrossRef]
- Barbieri, E.; Ceccaroli, P.; Agostini, D.; Zeppa, S.D.; Gioacchini, A.M.; Stocchi, V. Truffle-associated bacteria: Extrapolation from diversity to function. In True Truffle (Tuber spp.) in the World: Soil Ecology, Systematics and Biochemistry; Springer: Cham, Switzerland, 2016; pp. 301–317. [Google Scholar]
- Barbieri, E.; Guidi, C.; Bertaux, J.; Frey-Klett, P.; Garbaye, J.; Ceccaroli, P.; Saltarelli, R.; Zambonelli, A.; Stocchi, V. Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environ. Microbiol. 2007, 9, 2234–2246. [Google Scholar] [CrossRef]
- Perlińska-Lenart, U.; Piłsyk, S.; Gryz, E.; Turło, J.; Hilszczańska, D.; Kruszewska, J.S. Identification of bacteria and fungi inhabiting fruiting bodies of Burgundy truffle (Tuber aestivum Vittad.). Arch. Microbiol. 2020, 202, 2727–2738. [Google Scholar] [CrossRef] [PubMed]
- Splivallo, R.; Ebeler, S.E. Sulfur volatiles of microbial origin are key contributors to human-sensed truffle aroma. Appl. Microbiol. Biotechnol. 2015, 99, 2583–2592. [Google Scholar] [CrossRef] [PubMed]
- Monaco, P.; Naclerio, G.; Mello, A.; Bucci, A. Role and potentialities of bacteria associated with Tuber magnatum: A mini-review. Front. Microbiol. 2022, 13, 1017089. [Google Scholar] [CrossRef] [PubMed]
- Antony-Babu, S.; Deveau, A.; Van Nostrand, J.D.; Zhou, J.; Le Tacon, F.; Robin, C.; Frey-Klett, P.; Uroz, S. Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environ. Microbiol. 2014, 16, 2831–2847. [Google Scholar] [CrossRef] [PubMed]
- Sillo, F.; Vergine, M.; Luvisi, A.; Calvo, A.; Petruzzelli, G.; Balestrini, R.; Mancuso, S.; De Bellis, L.; Vita, F. Bacterial communities in the fruiting bodies and background soils of the white truffle Tuber magnatum. Front. Microbiol. 2022, 13, 864434. [Google Scholar] [CrossRef]
- Fu, Y.; Li, X.; Li, Q.; Wu, H.; Xiong, C.; Geng, Q.; Sun, H.; Sun, Q. Soil microbial communities of three major Chinese truffles in southwest China. Can. J. Microbiol. 2016, 62, 970–979. [Google Scholar] [CrossRef]
- Zampieri, E.; Chiapello, M.; Daghino, S.; Bonfante, P.; Mello, A. Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles. Sci. Rep. 2016, 6, 25773. [Google Scholar] [CrossRef]
- Siebyła, M.; Szyp-Borowska, I. Comparison of bacterial communities in roots of selected trees with and without summer truffle (Tuber aestivum) ectomycorrhiza. Folia For. Pol. 2021, 63, 97–111. [Google Scholar] [CrossRef]
- Ye, L.; Yang, X.; Zhang, B.; Zhou, J.; Tian, H.; Zhang, X.; Li, X. Seasonal Succession of Fungal Communities in Native Truffle (Tuber indicum) Ecosystems. Appl. Environ. Microbiol. 2023, 89, e00195-23. [Google Scholar] [CrossRef]
- Siebyła, M.; Szyp-Borowska, I.; Młodzińska, A. Bacterial communities inhabiting the ascomata of the ectomycorrhizal summer truffle (Tuber aestivum). Appl. Soil Ecol. 2024, 199, 105428. [Google Scholar] [CrossRef]
- Loverock, L.R. The Effects of Irrigation Treatments on Tuber melanosporum Extramatrical Mycelium and the Surrounding Ectomycorrhizal Fungal Community in a British Columbia Truffle Orchard (T). University of British Columbia. 2024. Available online: https://open.library.ubc.ca/collections/ubctheses/24/items/1.0443561 (accessed on 16 May 2024).
- Niimi, J.; Deveau, A.; Splivallo, R. Aroma and bacterial communities dramatically change with storage of fresh white truffle Tuber magnatum. LWT Food Sci. Technol. 2021, 151, 112125. [Google Scholar] [CrossRef]
- Marozzi, G.; Benucci, G.M.N.; Turchetti, B.; Massaccesi, L.; Baciarelli Falini, L.; Bonito, G.; Buzzini, P.; Agnelli, A.; Donnini, D.; Albertini, E. Correction to: Fungal and bacterial diversity in the Tuber magnatum ecosystem and microbiome. Microb. Ecol. 2023, 85, 522. [Google Scholar] [CrossRef] [PubMed]
- Graziosi, S.; Puliga, F.; Iotti, M.; Amicucci, A.; Zambonelli, A. In vitro interactions between Bradyrhizobium spp. and Tuber magnatum mycelium. Environ. Microbiol. Rep. 2024, 16, e13271. [Google Scholar] [CrossRef] [PubMed]
- Bragato, G.; Vignozzi, N.; Pellegrini, S.; Sladonja, B. Physical characterstics of the soil environment suitable for Tuber magnatum production in fluvial landscapes. Plant Soil 2010, 329, 51–63. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Package ‘vegan’. Community Ecol. Package Version 2013, 2, 1–295. [Google Scholar]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Murat, C.; Zampieri, E.; Vizzini, A.; Bonfante, P. Is the Perigord black truffle threatened by an invasive species? We dreaded it and it has happened! New Phytol. 2008, 178, 699–702. [Google Scholar] [CrossRef]
- Pavić, A.; Stanković, S.; Saljnikov, E.; Krüger, D.; Buscot, F.; Tarkka, M.; Marjanović, Ž. Actinobacteria may influence white truffle (Tuber magnatum Pico) nutrition, ascocarp degradation and interactions with other soil fungi. Fungal Ecol. 2013, 6, 527–538. [Google Scholar] [CrossRef]
- Leonardi, M.; Iotti, M.; Oddis, M.; Lalli, G.; Pacioni, G.; Leonardi, P.; Maccherini, S.; Perini, C.; Salerni, E.; Zambonelli, A. Assessment of ectomycorrhizal fungal communities in the natural habitats of Tuber magnatum (Ascomycota, Pezizales). Mycorrhiza 2013, 23, 349–358. [Google Scholar] [CrossRef]
- Vahdatzadeh, M.; Deveau, A.; Splivallo, R. The Role of the Microbiome of Truffles in Aroma Formation: A Meta-Analysis Approach. Appl. Environ. Microbiol. 2015, 81, 6946–6952. [Google Scholar] [CrossRef]
- Lalli, G.; Leonardi, M.; Oddis, M.; Pacioni, G.; Salerni, E.; Iotti, M.; Zambonelli, A. Expanding the understanding of a forest ectomycorrhizal community by combining root tips and fruiting bodies: A case study of Tuber magnatum stands. Turk. J. Bot. 2015, 39, 527–534. [Google Scholar] [CrossRef]
- Mello, A.; Miozzi, L.; Vizzini, A.; Napoli, C.; Kowalchuk, G.; Bonfante, P. Bacterial and fungal communities associated with Tuber magnatum-productive niches. Plant Biosyst. 2010, 144, 323–332. [Google Scholar] [CrossRef]
- Purahong, W.; Wubet, T.; Lentendu, G.; Schloter, M.; Pecyna, M.J.; Kapturska, D.; Hofrichter, M.; Krüger, D.; Buscot, F. Life in leaf litter: Novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol. Ecol. 2016, 25, 4059–4074. [Google Scholar] [CrossRef] [PubMed]
- Zotti, M.; Bonanomi, G.; Mancinelli, G.; Barquero, M.; De Filippis, F.; Giannino, F.; Mazzoleni, S.; González-Andrés, F. Riding the wave: Response of bacterial and fungal microbiota associated with the spread of the fairy ring fungus Calocybe gambosa. Appl. Soil Ecol. 2021, 163, 103963. [Google Scholar] [CrossRef]
- Zotti, M.; De Filippis, F.; Cesarano, G.; Ercolini, D.; Tesei, G.; Allegrezza, M.; Giannino, F.; Mazzoleni, S.; Bonanomi, G. One ring to rule them all: An ecosystem engineer fungus fosters plant and microbial diversity in a Mediterranean grassland. New Phytol. 2020, 227, 884–898. [Google Scholar] [CrossRef]
- Nguyen, N.H. Fungal Hyphosphere Microbiomes Are Distinct from Surrounding Substrates and Show Consistent Association Patterns. Microbiol. Spectr. 2023, 11, e04708–e04722. [Google Scholar] [CrossRef]
- Bonanomi, G.; De Filippis, F.; Cesarano, G.; La Storia, A.; Zotti, M.; Mazzoleni, S.; Incerti, G. Linking bacterial and eukaryotic microbiota to litter chemistry: Combining next generation sequencing with 13C CPMAS NMR spectroscopy. Soil Biol. Biochem. 2019, 129, 110–121. [Google Scholar] [CrossRef]
- Frankland, J.C. Fungal succession—Unravelling the unpredictable. Mycol. Res. 1998, 102, 1–15. [Google Scholar] [CrossRef]
- Baldrian, P. Enzymes of saprotrophic basidiomycetes. In Proceedings of the British Mycological Society Symposia Series; Academic Press: New York, NY, USA, 2008; pp. 19–41. [Google Scholar]
- Schmidt-Dannert, C. Biocatalytic portfolio of Basidiomycota. Curr. Opin. Chem. Biol. 2016, 31, 40–49. [Google Scholar] [CrossRef]
- Deacon, J.W. Fungal Biology; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Deacon, L.J.; Pryce-Miller, E.J.; Frankland, J.C.; Bainbridge, B.W.; Moore, P.D.; Robinson, C.H. Diversity and function of decomposer fungi from a grassland soil. Soil Biol. Biochem. 2006, 38, 7–20. [Google Scholar] [CrossRef]
- Kjøller, A.H.; Struwe, S. Fungal communities, succession, enzymes, and decomposition. Enzym. Environ. Act. Ecol. Appl. 2002, 1, 267–284. [Google Scholar]
- Tomao, A.; Bonet, J.A.; Castano, C.; de-Miguel, S. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For. Ecol. Manag. 2020, 457, 117678. [Google Scholar] [CrossRef]
- Wu, Y.T.; Wubet, T.; Trogisch, S.; Both, S.; Scholten, T.; Bruelheide, H.; Buscot, F. Forest age and plant species composition determine the soil fungal community composition in a Chinese subtropical forest. PLoS ONE 2013, 8, e66829. [Google Scholar] [CrossRef] [PubMed]
- Bonanomi, G.; Incerti, G.; Allegrezza, M. Assessing the impact of land abandonment, nitrogen enrichment and fairy-ring fungi on plant diversity of Mediterranean grasslands. Biodivers. Conserv. 2013, 22, 2285–2304. [Google Scholar] [CrossRef]
- Cannon, P.F.; Kirk, P.M. Fungal Families of the World; Cabi: Wallingford, UK, 2007. [Google Scholar]
- Rinaldi, A.; Comandini, O.; Kuyper, T.W. Ectomycorrhizal fungal diversity: Seperating the wheat from the chaff. Fungal Divers. 2008, 33, 1–45. [Google Scholar]
- Tedersoo, L.; May, T.W.; Smith, M.E. Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 2010, 20, 217–263. [Google Scholar] [CrossRef]
- Põlme, S.; Abarenkov, K.; Henrik Nilsson, R.; Lindahl, B.D.; Clemmensen, K.E.; Kauserud, H.; Nguyen, N.; Kjøller, R.; Bates, S.T.; Baldrian, P. FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 2020, 105, 1–16. [Google Scholar] [CrossRef]
- Gadgil, P.D.; Gadgil, R.L. Suppression of Litter Decomposition by Mycorrhizal Roots of Pinus radiata; New Zealand Forest Service: Rotorua, New Zealand, 1975.
- Gadgil, R.L.; Gadgil, P.D. Mycorrhiza and litter decomposition. Nature 1971, 233, 133. [Google Scholar] [CrossRef]
- Lindahl, B.D.; Tunlid, A. Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs. New Phytol. 2015, 205, 1443–1447. [Google Scholar] [CrossRef]
- Rosling, A.; Landeweert, R.; Lindahl, B.; Larsson, K.H.; Kuyper, T.; Taylor, A.; Finlay, R. Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol. 2003, 159, 775–783. [Google Scholar] [CrossRef]
- Haq, I.U.; Zhang, M.; Yang, P.; van Elsas, J.D. The interactions of bacteria with fungi in soil: Emerging concepts. Adv. Appl. Microbiol. 2014, 89, 185–215. [Google Scholar] [PubMed]
- Deveau, A.; Bonito, G.; Uehling, J.; Paoletti, M.; Becker, M.; Bindschedler, S.; Hacquard, S.; Herve, V.; Labbé, J.; Lastovetsky, O.A. Bacterial–fungal interactions: Ecology, mechanisms and challenges. FEMS Microbiol. Rev. 2018, 42, 335–352. [Google Scholar] [CrossRef] [PubMed]
- Brabcová, V.; Nováková, M.; Davidová, A.; Baldrian, P. Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol. 2016, 210, 1369–1381. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, L.; Zhang, J.; Yin, J.; Huang, S. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front. Microbiol. 2017, 8, 187. [Google Scholar] [CrossRef]
- Kulichevskaya, I.S.; Ivanova, A.O.; Baulina, O.I.; Bodelier, P.L.; Damste, J.S.S.; Dedysh, S.N. Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands. Int. J. Syst. Evol. Microbiol. 2008, 58, 1186–1193. [Google Scholar] [CrossRef]
- Iotti, M.; Leonardi, M.; Lancellotti, E.; Salerni, E.; Oddis, M.; Leonardi, P.; Perini, C.; Pacioni, G.; Zambonelli, A. Spatio-temporal dynamic of Tuber magnatum mycelium in natural truffle grounds. PLoS ONE 2014, 9, e115921. [Google Scholar] [CrossRef]
- Iotti, M.; Leonardi, P.; Vitali, G.; Zambonelli, A. Effect of summer soil moisture and temperature on the vertical distribution of Tuber magnatum mycelium in soil. Biol. Fertil. Soils 2018, 54, 707–716. [Google Scholar] [CrossRef]
- Schneider-Maunoury, L.; Deveau, A.; Moreno, M.; Todesco, F.; Belmondo, S.; Murat, C.; Courty, P.E.; Jąkalski, M.; Selosse, M.A. Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, endophytically colonise roots of non-ectomycorrhizal plants in natural environments. New Phytol. 2020, 225, 2542–2556. [Google Scholar] [CrossRef]
- Yabe, S.; Sakai, Y.; Abe, K.; Yokota, A. Diversity of Ktedonobacteria with actinomycetes-like morphology in terrestrial environments. Microbes Environ. 2017, 32, 61–70. [Google Scholar] [CrossRef]
- Kulichevskaya, I.S.; Baulina, O.I.; Bodelier, P.L.; Rijpstra, W.I.C.; Damste, J.S.S.; Dedysh, S.N. Zavarzinella formosa gen. nov., sp. nov., a novel stalked, Gemmata-like planctomycete from a Siberian peat bog. Int. J. Syst. Evol. Microbiol. 2009, 59, 357–364. [Google Scholar] [CrossRef]
- Wang, F.; Jia, M.; Li, K.; Cui, Y.; An, L.; Sheng, H. Sphingomonas sp. Hbc-6 alters Arabidopsis metabolites to improve plant growth and drought resistance by manipulating the microbiome. Microbiol. Res. 2024, 287, 127852. [Google Scholar] [CrossRef] [PubMed]
- Jane Barker, S.; Tagu, D.; Delp, G. Regulation of root and fungal morphogenesis in mycorrhizal symbioses. Plant Physiol. 1998, 116, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Dix, N.J. Fungal Ecology; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: New York, NY, USA, 2010. [Google Scholar]
- Herrero de Aza, C.; Armenteros, S.; McDermott, J.; Mauceri, S.; Olaizola, J.; Hernández-Rodríguez, M.; Mediavilla, O. Fungal and bacterial communities in Tuber melanosporum plantations from northern Spain. Forests 2022, 13, 385. [Google Scholar] [CrossRef]
- Pavić, A.; Stanković, S.; Marjanović, Ž. Biochemical characterization of a sphingomonad isolate from the ascocarp of white truffle (Tuber magnatum Pico). Arch. Biol. Sci. 2011, 63, 697–704. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rondolini, M.; Zotti, M.; Bragato, G.; Baciarelli Falini, L.; Reale, L.; Donnini, D. The Expanding Truffle Environment: A Study of the Microbial Dynamics in the Old Productive Site and the New Tuber magnatum Picco Habitat. J. Fungi 2024, 10, 800. https://doi.org/10.3390/jof10110800
Rondolini M, Zotti M, Bragato G, Baciarelli Falini L, Reale L, Donnini D. The Expanding Truffle Environment: A Study of the Microbial Dynamics in the Old Productive Site and the New Tuber magnatum Picco Habitat. Journal of Fungi. 2024; 10(11):800. https://doi.org/10.3390/jof10110800
Chicago/Turabian StyleRondolini, Mara, Maurizio Zotti, Gilberto Bragato, Leonardo Baciarelli Falini, Lara Reale, and Domizia Donnini. 2024. "The Expanding Truffle Environment: A Study of the Microbial Dynamics in the Old Productive Site and the New Tuber magnatum Picco Habitat" Journal of Fungi 10, no. 11: 800. https://doi.org/10.3390/jof10110800
APA StyleRondolini, M., Zotti, M., Bragato, G., Baciarelli Falini, L., Reale, L., & Donnini, D. (2024). The Expanding Truffle Environment: A Study of the Microbial Dynamics in the Old Productive Site and the New Tuber magnatum Picco Habitat. Journal of Fungi, 10(11), 800. https://doi.org/10.3390/jof10110800