Computational Design of Novel Cyclic Peptides Endowed with Autophagy-Inhibiting Activity on Cancer Cell Lines
"> Figure 1
<p>(<b>A</b>) LIR2-RavZ Cα atom RMSF plot (orange line). (<b>B</b>) Predicted binding mode of LIR2-RavZ (orange sticks) in complex with LC3B resulting at the end of MD simulations. The protein surface is colored depending on the atomic partial charges of the protein residues: blue for positive and red for negative charges, respectively. The H-bonds are represented as yellow dotted lines.</p> "> Figure 2
<p>(<b>A</b>) Pep3 Cα atom RMSF plot (pink line) compared to LIR2-RavZ (orange line). Asterisks indicate the residues involved in the disulfide bond. (<b>B</b>) Predicted binding mode of Pep3 (pink sticks) in complex with LC3B resulting at the end of MD simulations. The protein surface is colored depending on the atomic partial charges of the protein residues: blue for positive and red for negative charges, respectively. The H-bonds are represented as yellow dotted lines.</p> "> Figure 3
<p>(<b>A</b>) Effect of Pep3 on PC3 cell viability. Cell viability was determined using MTT assay after 24 h, 48 h, and 72 h. Six independent biological samples for each condition were analyzed (<span class="html-italic">n</span> = 6). Statistical analysis was performed using one-way ANOVA followed by Dunnett’s test (* <span class="html-italic">p</span> < 0.05 vs. CTRL; *** <span class="html-italic">p</span> < 0.001 vs. CTRL). (<b>B</b>) Western blot analysis of the LC3-II/LC3-I ratio in the PC3 cells treated with Pep3 (5 µM) or 3-methyladenine (3-MA) (1 mM).</p> "> Figure 4
<p>(<b>A</b>) Pep6 Cα atom RMSF plot (red line) compared to LIR2-RavZ (orange line) and Pep3 (pink line). Asterisks indicate the residues involved in the disulfide bond. The D-amino acids of the Pep6 sequence are reported as lowercase letters. (<b>B</b>) Predicted binding mode of Pep6 (magenta sticks) in complex with LC3B resulting at the end of MD simulations. The protein surface is colored depending on the atomic partial charges of the protein residues: blue for positive and red for negative charges, respectively. The H-bonds are represented as yellow dotted lines.</p> "> Figure 5
<p>(<b>A</b>) Effect of LIR2-RavZ and Pep6 on PC3 cell viability. Cell viability was determined using MTT assay after 72 h. Six independent biological samples for each condition were analyzed (<span class="html-italic">n</span> = 6). Statistical analysis was performed using one-way ANOVA followed by Dunnett’s test (** <span class="html-italic">p</span> < 0.01 vs. CTRL; *** <span class="html-italic">p</span> < 0.001 vs. CTRL). (<b>B</b>) Effect of LIR2-RavZ and Pep6 on DU145 cell viability. Cell viability was determined using MTT assay after 72 h. Six independent biological samples for each condition were analyzed (<span class="html-italic">n</span> = 6). Statistical analysis was performed using one-way ANOVA followed by Dunnett’s test. (<b>C</b>) Western blot analysis of LC3-II/LC3-I ratio and p62 in PC3 cells treated with LIR2-RavZ and Pep6. The relative optical density of LC3-I/tubulin, LC3-II/tubulin, and p62/tubulin was quantified using ImageJ software. The bar graph represents the mean ± SD calculated from three independent experiments. Statistical analysis was performed using one-way ANOVA followed by Dunnett’s post-test (*** <span class="html-italic">p</span> < 0.001 vs. CTRL). (<b>D</b>) Western blot analysis of LC3-II/LC3-I ratio in PC3 cells treated with Pep6 (5 µM) and trehalose (100 mM) for 48 h. The relative optical density of LC3-II/LC3-I was quantified using ImageJ software (version 1.50i). The bar graph represents the mean ± SD calculated from three independent experiments. Statistical analysis was performed using one-way ANOVA followed by Bonferroni’s post test (* <span class="html-italic">p</span> < 0.05 vs. CTRL).</p> "> Figure 6
<p>Effect of LIR2-RavZ and Pep6 on cell viability. Cell viability was determined using MTS assay on PNT2 (<b>A</b>), A549 (<b>B</b>), and MCF-7 (<b>C</b>) 96 h post-treatment. Absorbance was measured with a 96-well plate spectrophotometer (Varioskan Flash Multimode Reader) at 490 nm (* <span class="html-italic">p</span> < 0.05 vs. CTRL; ** <span class="html-italic">p</span> < 0.01 vs. CTRL).</p> "> Figure 7
<p>MST curves acquired using human recombinant His-tagged LC3B protein incubated with different concentrations of the control peptide LIR2-RavZ (<b>A</b>) and Pep6 (<b>B</b>), using the Monolith NT.115<sup>Pico</sup> instrument. Two independent experiments were performed to compute the K<sub>d</sub> curve.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
- Rigidification: Designing cyclic peptides maintaining the original length of the peptide (12 residues) and inserting cysteines to create the disulfide bridge (replacing two residues, identified as having minor significance in the interaction with LC3B through alanine scanning);
- Terms protection through the amidation and acetylation of the C- and N- terms, respectively, to prevent peptide self-cyclization;
- Affinity maturation: Optimization of the sequence to attain new peptides with improved affinity on LC3B.
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behrends, C.; Sowa, M.E.; Gygi, S.P.; Harper, J.W. Network Organization of the Human Autophagy System. Nature 2010, 466, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Klionsky, D.J. Autophagosome Formation: Core Machinery and Adaptations. Nat. Cell Biol. 2007, 9, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Brumell, J.H. Bacteria-Autophagy Interplay: A Battle for Survival. Nat. Rev. Microbiol. 2014, 12, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, M.; Guittaut, M.; Fraichard, A.; Despouy, G. The Functions of Atg8-Family Proteins in Autophagy and Cancer: Linked or Unrelated? Autophagy 2021, 17, 599–611. [Google Scholar] [CrossRef]
- Hain, A.U.P.; Weltzer, R.R.; Hammond, H.; Jayabalasingham, B.; Dinglasan, R.R.; Graham, D.R.M.; Colquhoun, D.R.; Coppens, I.; Bosch, J. Structural Characterization and Inhibition of the Plasmodium Atg8–Atg3 Interaction. J. Struct. Biol. 2012, 180, 551–562. [Google Scholar] [CrossRef]
- Villa, S.; Legnani, L.; Colombo, D.; Gelain, A.; Lammi, C.; Bongiorno, D.; Ilboudo, D.P.; Mcgee, K.E.; Bosch, J.; Grazioso, G. Structure-Based Drug Design, Synthesis and Biological Assays of P. Falciparum Atg3–Atg8 Protein-Protein Interaction Inhibitors. J. Comput. Aided Mol. Des. 2018, 32, 473–486. [Google Scholar] [CrossRef]
- Wong, Y.C.; Holzbaur, E.L.F. Optineurin is an Autophagy Receptor for Damaged Mitochondria in Parkin-Mediated Mitophagy That is Disrupted by an ALS-Linked Mutation. Proc. Natl. Acad. Sci. USA 2014, 111, E4439–E4448. [Google Scholar] [CrossRef]
- McLendon, P.M.; Ferguson, B.S.; Osinska, H.; Shenuarin Bhuiyan, M.; James, J.; McKinsey, T.A.; Robbins, J. Tubulin Hyperacetylation is Adaptive in Cardiac Proteotoxicity by Promoting Autophagy. Proc. Natl. Acad. Sci. USA 2014, 111, E5178–E5186. [Google Scholar] [CrossRef]
- Chen, M.; Hong, M.J.; Sun, H.; Wang, L.; Shi, X.; Gilbert, B.E.; Corry, D.B.; Kheradmand, F.; Wang, J. Essential Role for Autophagy in the Maintenance of Immunological Memory against Influenza Infection. Nat. Med. 2014, 20, 503–510. [Google Scholar] [CrossRef]
- Quan, W.; Lim, Y.M.; Lee, M.S. Role of Autophagy in Diabetes and Endoplasmic Reticulum Stress of Pancreatic β-Cells. Exp. Mol. Med. 2012, 44, 81–88. [Google Scholar] [CrossRef]
- Sarparanta, J.; García-Macia, M.; Singh, R. Autophagy and Mitochondria in Obesity and Type 2 Diabetes. Curr. Diabetes Rev. 2016, 13, 352–369. [Google Scholar] [CrossRef]
- Mao, Y.; Yu, F.; Wang, J.; Guo, C.; Fan, X. Autophagy: A New Target for Nonalcoholic Fatty Liver Disease Therapy. Hepat. Med. 2016, 8, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulos, S.; Bolkus, C.C.; Zografos, E.; Athanasiou, A.; Bongiovanni, A.M.; Dolliver’s, G.; Bakoyiannis, C.N.; Theodoropoulos, G.E.; Zografos, G.C.; Witkin, S.S.; et al. Targeting Both Autophagy and Immunotherapy in Breast Cancer Treatment. Metabolites 2022, 12, 966. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Hernández, M.; Arias, A.; Martínez-García, D.; Pérez-Tomás, R.; Quesada, R.; Soto-Cerrato, V. Targeting Autophagy for Cancer Treatment and Tumor Chemosensitization. Cancers 2019, 11, 1599. [Google Scholar] [CrossRef]
- Amaravadi, R.K.; Lippincott-Schwartz, J.; Yin, X.M.; Weiss, W.A.; Takebe, N.; Timmer, W.; DiPaola, R.S.; Lotze, M.T.; White, E. Principles and Current Strategies for Targeting Autophagy for Cancer Treatment. Clin. Cancer Res. 2011, 17, 654–666. [Google Scholar] [CrossRef]
- Yu, G.; Klionsky, D.J. Life and Death Decisions—The Many Faces of Autophagy in Cell Survival and Cell Death. Biomolecules 2022, 12, 866. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, R. Small-Molecule Regulators of Autophagy and Their Potential Therapeutic Applications. ChemMedChem 2013, 8, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Akin, D.; Wang, S.K.; Habibzadegah-Tari, P.; Law, B.; Ostrov, D.; Li, M.; Yin, X.M.; Kim, J.S.; Horenstein, N.; Dunn, W.A. A Novel ATG4B Antagonist Inhibits Autophagy and Has a Negative Impact on Osteosarcoma Tumors. Autophagy 2014, 10, 2021–2035. [Google Scholar] [CrossRef]
- Fu, Y.; Hong, L.; Xu, J.; Zhong, G.; Gu, Q.; Gu, Q.; Guan, Y.; Zheng, X.; Dai, Q.; Luo, X.; et al. Discovery of a Small Molecule Targeting Autophagy via ATG4B Inhibition and Cell Death of Colorectal Cancer Cells in Vitro and in Vivo. Autophagy 2019, 15, 295–311. [Google Scholar] [CrossRef] [PubMed]
- Bosc, D.; Vezenkov, L.; Bortnik, S.; An, J.; Xu, J.; Choutka, C.; Hannigan, A.M.; Kovacic, S.; Loo, S.; Clark, P.G.K.; et al. A New Quinoline-Based Chemical Probe Inhibits the Autophagy-Related Cysteine Protease ATG4B. Sci. Rep. 2018, 8, 11653. [Google Scholar] [CrossRef]
- Fassi, E.M.A.; Garofalo, M.; Sgrignani, J.; Dei Cas, M.; Mori, M.; Roda, G.; Cavalli, A.; Grazioso, G. Focused Design of Novel Cyclic Peptides Endowed with GABARAP-Inhibiting Activity. Int. J. Mol. Sci. 2022, 23, 5070. [Google Scholar] [CrossRef] [PubMed]
- Mikhaylova, O.; Stratton, Y.; Hall, D.; Kellner, E.; Ehmer, B.; Drew, A.F.; Gallo, C.A.; Plas, D.R.; Biesiada, J.; Meller, J.; et al. VHL-Regulated MiR-204 Suppresses Tumor Growth through Inhibition of LC3B-Mediated Autophagy in Renal Clear Cell Carcinoma. Cancer Cell 2012, 21, 532–546. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.W.; Kim, S.Y.; Park, J.W. Autophagy Inhibition Enhances Ursolic Acid-Induced Apoptosis in PC3 Cells. Biochim. Biophys. Acta Mol. Cell Res. 2012, 1823, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Liu, J.; Wang, Z.; Sun, B.; Wang, J. Inhibitory Effects of 5-Heptadecylresorcinol on the Proliferation of Human MCF-7 Breast Cancer Cells through Modulating PI3K/Akt/MTOR Pathway. J. Funct. Foods 2020, 69, 103946. [Google Scholar] [CrossRef]
- Fu, R.; Deng, Q.; Zhang, H.; Hu, X.; Li, Y.; Liu, Y.; Hu, J.; Luo, Q.; Zhang, Y.; Jiang, X.; et al. A Novel Autophagy Inhibitor Berbamine Blocks SNARE-Mediated Autophagosome-Lysosome Fusion through Upregulation of BNIP3. Cell Death Dis. 2018, 9, 243. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhu, J.; Ye, Y.; Liu, Y.; He, Y.; Zhang, L.; Tang, D.; Qiao, C.; Feng, X.; Li, J.; et al. Inhibition LC3B Can Increase Chemosensitivity of Ovarian Cancer Cells. Cancer Cell Int. 2019, 19, 199. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Lei, H.; Wahafu, W.; Liu, Y.; Ping, H.; Zhang, X. Inhibition of Autophagy Enhances the Anticancer Effect of Enzalutamide on Bladder Cancer. Biomed. Pharmacother. 2019, 120, 109490. [Google Scholar] [CrossRef] [PubMed]
- Lazova, R.; Camp, R.L.; Klump, V.; Siddiqui, S.F.; Amaravadi, R.K.; Pawelek, J.M. Punctate LC3B Expression is a Common Feature of Solid Tumors and Associated with Proliferation, Metastasis, and Poor Outcome. Clin. Cancer Res. 2012, 18, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Johansen, T.; Lamark, T. Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. J. Mol. Biol. 2020, 432, 80–103. [Google Scholar] [CrossRef]
- Choy, A.; Dancourt, J.; Mugo, B.; O’Connor, T.J.; Isberg, R.R.; Melia, T.J.; Roy, C.R. The Legionella Effector RavZ Inhibits Host Autophagy through Irreversible Atg8 Deconjugation. Science 2012, 338, 1072–1076. [Google Scholar] [CrossRef]
- Lammi, C.; Sgrignani, J.; Arnoldi, A.; Grazioso, G. Biological Characterization of Computationally Designed Analogs of Peptide TVFTSWEEYLDWV (Pep2-8) with Increased PCSK9 Antagonistic Activity. Sci. Rep. 2019, 9, 2343. [Google Scholar] [CrossRef] [PubMed]
- Sgrignani, J.; Arnoldi, A.; Lammi, C.; Grazioso, G.; Roda, G. Inhibition of PCSK9 D374Y/LDLR Protein–Protein Interaction by Computationally Designed T9 Lupin Peptide. ACS Med. Chem. Lett. 2018, 10, 425–430. [Google Scholar]
- Yang, A.; Pantoom, S.; Wu, Y.W. Elucidation of the Anti-Autophagy Mechanism of the Legionella Effector Ravz Using Semisynthetic LC3 Proteins. Elife 2017, 6, e23905. [Google Scholar] [CrossRef] [PubMed]
- Cristofani, R.; Montagnani Marelli, M.; Cicardi, M.E.; Fontana, F.; Marzagalli, M.; Limonta, P.; Poletti, A.; Moretti, R.M. Dual Role of Autophagy on Docetaxel-Sensitivity in Prostate Cancer Cells. Cell Death Dis. 2018, 9, 889. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Yue, L.; Wan, W.; Zhang, Y.; Zhang, B.; Otomo, C.; Li, Q.; Lin, T.; Hu, J.; Xu, P.; et al. Inhibition of Autophagy by a Small Molecule through Covalent Modification of the LC3 Protein. Angew. Chem. Int. Ed. Engl. 2021, 60, 26105–26114. [Google Scholar] [CrossRef] [PubMed]
- Hamaï, A.; Codogno, P. New Targets for Acetylation in Autophagy. Sci. Signal. 2012, 5, pe29. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Xu, Y.; Wan, W.; Shou, X.; Qian, J.; You, Z.; Liu, B.; Chang, C.; Zhou, T.; Lippincott-Schwartz, J.; et al. Deacetylation of Nuclear LC3 Drives Autophagy Initiation under Starvation. Mol. Cell 2015, 57, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Su, H.; Yin, W.; Wang, L.; Huang, R. Acetylation Modulates LC3 Stability and Cargo Recognition. FEBS Lett. 2019, 593, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, D.Y.; Xu, L.H.; He, X.H.; Zhang, Y.T.; Zeng, L.H.; Cai, J.Y.; Ren, S. Autophagy Is Differentially Induced in Prostate Cancer LNCaP, DU145 and PC-3 Cells via Distinct Splicing Profiles of ATG5. Autophagy 2013, 9, 20–32. [Google Scholar] [CrossRef]
- Seidel, S.A.I.; Dijkman, P.M.; Lea, W.A.; van den Bogaart, G.; Jerabek-Willemsen, M.; Lazic, A.; Joseph, J.S.; Srinivasan, P.; Baaske, P.; Simeonov, A.; et al. Microscale Thermophoresis Quantifies Biomolecular Interactions under Previously Challenging Conditions. Methods 2013, 59, 301–315. [Google Scholar] [CrossRef]
- Olsvik, H.L.; Lamark, T.; Takagi, K.; Larsen, K.B.; Evjen, G.; Øvervatn, A.; Mizushima, T.; Johansen, X.T. FYCO1 Contains a C-Terminally Extended, LC3A/B-Preferring LC3-Interacting Region (LIR) Motif Required for Efficient Maturation of Autophagosomes during Basal Autophagy. J. Biol. Chem. 2015, 290, 29361–29374. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein–Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [PubMed]
- Fassi, E.M.A.; Manenti, M.; Citarella, A.; Dei Cas, M.; Casati, S.; Micale, N.; Schirmeister, T.; Roda, G.; Silvani, A.; Grazioso, G. Computational Design, Synthesis and Biophysical Evaluation of β-Amido Boronic Acids as Potent SARS-CoV-2 Mpro Inhibitors. Molecules 2023, 28, 2356. [Google Scholar] [CrossRef]
- Lammi, C.; Fassi, E.M.A.; Manenti, M.; Brambilla, M.; Conti, M.; Li, J.; Roda, G.; Camera, M.; Silvani, A.; Grazioso, G. Computational Design, Synthesis, and Biological Evaluation of Diimidazole Analogues Endowed with Dual PCSK9/HMG-CoAR-Inhibiting Activity. J. Med. Chem. 2023, 66, 7943–7958. [Google Scholar] [CrossRef]
Peptide | Sequence | ΔG* [kcal/mol] | SD |
---|---|---|---|
LIR2-RavZ | DIDEFDLLEGDE | −86.7 | 13.1 |
Pep1 | −87.5 | 8.7 | |
Pep2 | −109.1 | 7.2 |
Peptide | Sequence | ΔG* [kcal/mol] | SD |
---|---|---|---|
Pep3 | −149.8 | 12.1 | |
Pep4 | −146.5 | 9.5 | |
Pep5 | −138.2 | 11.6 | |
Pep6 | −127.1 | 10.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albani, M.; Fassi, E.M.A.; Moretti, R.M.; Garofalo, M.; Montagnani Marelli, M.; Roda, G.; Sgrignani, J.; Cavalli, A.; Grazioso, G. Computational Design of Novel Cyclic Peptides Endowed with Autophagy-Inhibiting Activity on Cancer Cell Lines. Int. J. Mol. Sci. 2024, 25, 4622. https://doi.org/10.3390/ijms25094622
Albani M, Fassi EMA, Moretti RM, Garofalo M, Montagnani Marelli M, Roda G, Sgrignani J, Cavalli A, Grazioso G. Computational Design of Novel Cyclic Peptides Endowed with Autophagy-Inhibiting Activity on Cancer Cell Lines. International Journal of Molecular Sciences. 2024; 25(9):4622. https://doi.org/10.3390/ijms25094622
Chicago/Turabian StyleAlbani, Marco, Enrico Mario Alessandro Fassi, Roberta Manuela Moretti, Mariangela Garofalo, Marina Montagnani Marelli, Gabriella Roda, Jacopo Sgrignani, Andrea Cavalli, and Giovanni Grazioso. 2024. "Computational Design of Novel Cyclic Peptides Endowed with Autophagy-Inhibiting Activity on Cancer Cell Lines" International Journal of Molecular Sciences 25, no. 9: 4622. https://doi.org/10.3390/ijms25094622
APA StyleAlbani, M., Fassi, E. M. A., Moretti, R. M., Garofalo, M., Montagnani Marelli, M., Roda, G., Sgrignani, J., Cavalli, A., & Grazioso, G. (2024). Computational Design of Novel Cyclic Peptides Endowed with Autophagy-Inhibiting Activity on Cancer Cell Lines. International Journal of Molecular Sciences, 25(9), 4622. https://doi.org/10.3390/ijms25094622