A Flexible Spatial Framework for Modeling Spread of Pathogens in Animals with Biosurveillance and Disease Control Applications
<p>Schematic for the intra-county disease transmission and progression model. Boxes indicate states for animals of species <span class="html-italic">a</span> in county <span class="html-italic">X</span>. Solid boxes label the natural history disease states: susceptible ( <span class="html-fig-inline" id="ijgi-03-00638-i010"> <img alt="Ijgi 03 00638 i010" src="/ijgi/ijgi-03-00638/article_deploy/html/images/ijgi-03-00638-i010.png"/></span>), no clinical signs infected ( <span class="html-fig-inline" id="ijgi-03-00638-i002"> <img alt="Ijgi 03 00638 i002" src="/ijgi/ijgi-03-00638/article_deploy/html/images/ijgi-03-00638-i002.png"/></span>), infected latent carrier state ( <span class="html-fig-inline" id="ijgi-03-00638-i003"> <img alt="Ijgi 03 00638 i003" src="/ijgi/ijgi-03-00638/article_deploy/html/images/ijgi-03-00638-i003.png"/></span>), symptomatic infected ( <span class="html-fig-inline" id="ijgi-03-00638-i004"> <img alt="Ijgi 03 00638 i004" src="/ijgi/ijgi-03-00638/article_deploy/html/images/ijgi-03-00638-i004.png"/></span>), recovered ( <span class="html-fig-inline" id="ijgi-03-00638-i005"> <img alt="Ijgi 03 00638 i005" src="/ijgi/ijgi-03-00638/article_deploy/html/images/ijgi-03-00638-i005.png"/></span>), and dead ( <span class="html-fig-inline" id="ijgi-03-00638-i006"> <img alt="Ijgi 03 00638 i006" src="/ijgi/ijgi-03-00638/article_deploy/html/images/ijgi-03-00638-i006.png"/></span>) (due only to disease mortality). States bordered by dashed lines represent mitigation states: quarantined susceptibles ( <span class="html-fig-inline" id="ijgi-03-00638-i007"> <img alt="Ijgi 03 00638 i007" src="/ijgi/ijgi-03-00638/article_deploy/html/images/ijgi-03-00638-i007.png"/></span>), prophylactically vaccinated susceptibles ( <span class="html-fig-inline" id="ijgi-03-00638-i008"> <img alt="Ijgi 03 00638 i008" src="/ijgi/ijgi-03-00638/article_deploy/html/images/ijgi-03-00638-i008.png"/></span>), vaccinated infected animals( <span class="html-fig-inline" id="ijgi-03-00638-i009"> <img alt="Ijgi 03 00638 i009" src="/ijgi/ijgi-03-00638/article_deploy/html/images/ijgi-03-00638-i009.png"/></span>), and culled animals ( <span class="html-fig-inline" id="ijgi-03-00638-i011"> <img alt="Ijgi 03 00638 i011" src="/ijgi/ijgi-03-00638/article_deploy/html/images/ijgi-03-00638-i011.png"/></span>).</p> "> Figure 2
<p>Plots of density of (<b>a</b>) hogs and pigs, (<b>b</b>) cattle and calves in the United States according to the USDA NASS 2007 census (top row, left to right). Plots of density of (<b>c</b>) layers and (<b>d</b>) broilers in the United States according to the USDA NASS 2007 census (bottom row, left to right). In our simulations, regions with high density of host species result in faster spread with higher consequence.</p> "> Figure 3
<p>Scatter plot of the total number of infected animals <span class="html-italic">vs.</span> duration of the epidemic for 1200 realizations of the consequence model for (<b>a</b>) FMD and (<b>b</b>) HPAI. Each dot corresponds to a single run with a randomly sampled set of parameters. Different colors label initial location of epidemic spread. Although both plots show dependence on geography, the HPAI plot shows much tighter clustering of epidemic length and size depending on the starting location of the epidemic. An exception is that for FMD, outbreaks started in California tend to peak high and fast.</p> "> Figure 4
<p>Inter-county level spread of HPAI. Green dots indicate counties where there are susceptible poultry according to the 2007 USDA NASS agricultural census data for layers, pullets, broilers, and turkeys. Blue dots indicate counties where there are at least 10 infected asymptomatic birds, red dots indicate counties with at least 1 symptomatic infected bird. Black crosses indicate counties which either initially have no susceptible poultry or where the susceptibles have been depopulated via quarantine measures, culling, or disease mortality.</p> "> Figure 5
<p>Time series (averaged over counties and simulations) for the number of newly infected animals from FMD is plotted against the time of the epidemic peak, with the color indicating the animal type. On average, the FMD outbreaks peak at around 80 days, with hogs being the most affected. The epidemic peaks at a lower number for beef cattle, but lasts longer than for hogs.</p> "> Figure 6
<p>Inter-county level spread of FMD. Green dots indicate where there are susceptible populations of cattle, hogs and/or sheep according to the 2007 USDA NASS agricultural census data. Blue dots indicate where there are 10 or greater asymptomatic animals, red dots indicate where there are one or more symptomatic animals. Black crosses indicate counties which either had no initial susceptible populations or that are depopulated of susceptibles by mitigative measures, <span class="html-italic">i.e.</span>, quarantine, culling and/or vaccination.</p> "> Figure 7
<p>Time series for all simulations for FMD grouped by the time to cull animals. The red plus signs are cull delay of 14–21 days, the green crosses a cull delay of 7–14 days and the blue stars a cull delay of 1–7 days. Less delay in culling generally results in fewer total dead cattle and in slower epidemic spread.</p> "> Figure 8
<p>HPAI consequence (measured as total number dead during a simulation) as a function of efficacy of quarantine for all epidemic simulations. The percent of animals <b><span class="html-italic">not protected</span></b> by quarantine is on the x-axis and the total number of dead animals on the y-axis. We see that for HPAI, effective quarantine results in reduction of dead animals by almost an order of magnitude.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulations
2.2. Foot-and-Mouth Disease
Model Parameter | Cattle | Hogs | Sheep |
---|---|---|---|
Transmission Rate/Subclinical Animal | 0.000000115 | 0.000000115 | 0.000000115 |
Transmission Rate/Clinical Animal | 0.00000023 | 0.00000050 | 0.00000023 |
Transmission Rate/Seroconverted non-progressing animal | 0.000000115 | 0.000000115 | 0.000000115 |
Susceptibility per animal | 15.2 | 7.55 | 15.2 |
Subclinical stage residence time (days) | 4–8 | 7–5 | 10–14 |
Clinical signs stage residence time (days) | 14–21 | 14–21 | 14–21 |
Seroconverted stage residence time (days) | 120–1277.5 | 120–1277.5 | 120–1277.5 |
Infected animals that progress to clinical signs (fraction) | 0.95–1.0 | ||
Infected animals that dies (fraction) | 0.01 | ||
Recovery stage residence time (duration of immunity) | 90–180 | ||
Vaccine protection efficacy for susceptibles (fraction) | 0.60–0.95 | ||
Vaccine protection efficacy for infected animals (fraction) | 0.60–0.95 | ||
Culling rate (animals per day) | All animals on infected premises in 48 h | ||
Vaccination policy | Available in 21 days; ring+supressive tactic | ||
Quarantine policy (fractional efficacy) | 0.10–0.90 | ||
Inter-state movement control efficacy (fraction) | 0.10–0.90 | ||
Short-range movement control efficacy (fraction) | 0.10–0.90 | ||
Radius of surveillance zone (miles) | 20 | ||
Time between decision and quarantine (county level-days) | 1–2 | ||
Time between detection and culling (county level-days) | 1–2 | ||
Time between detection and vaccination (county level-days) | 17 | ||
Characteristic length of local speed (miles) | 5 |
2.3. Highly Pathogenic Avian Influenza
Model Parameters | Poultry |
---|---|
Transmission Rate/Subclinical Animal | 0 |
Transmission Rate/Clinical Signs Animal | 0.000000425 |
Transmission Rate/Serconverted Non-progressing Animal | N/A |
Susceptibility/Animal | 1.0 |
Subclinical Stage Residence Time (days) | 1–3 |
Clinical Signs Stage Residence Time (days) | 1–1.5 |
Seroconverted Stage Residence Time (days) | N/A |
Infected Animals that Progress to Clinical Signs (fraction) | 1.0 |
Infected Animals that die | 0.975 |
Recovery Stage Residence Time (duration of immunity) | Indefinite |
Vaccination Protection Efficacy for Susceptibles | N/A |
Vaccination Protection Efficacy for Infected Animals | N/A |
Culling Rate (animals per day) | 53,500 |
Quarantine Policy (fractional efficacy) | 0–1.0 |
Vaccination Policy | N/A. |
Interstate Movement Control Efficacy (fraction) | N/A |
Short Range Movement Control Efficacy | 0–0.5 |
Radius of Surveillance Zone (miles) | 6.2 |
Time Between Detection and Quarantine (days) | 2.67 if not in surveillance zone.1 if in surveillance zone. |
Time Between Detection and Culling (days) | 5.67 if not in surveillance zone.1 if in surveillance zone. |
Time Between Detection and Vaccination (days) | N/A |
Characteristic length of local spread (miles) | 5.53 |
3. Results
Disease Endpoint | Model | Aicc | ΔAICC | Wi |
---|---|---|---|---|
Total Infected | Global | 13,906.4 | 0 | 0.4954626 |
Location + Asym + Infect+ Trigger + Intraquar + Interquar + Duration (Without fatality rate) | 13,914.4 | 8 | 0.0090747 | |
Location + Asym + Infect + Fatality + Trigger + Duration (Without short- and long-range quarantine effect) | 13,990.4 | 84 | 0.0000000 | |
Location + Trigger + Intraquar + Interquar + Duration (Without disease characteristics) | 13,947.4 | 41 | 0.0000000 | |
Asym + Infect + Fatality (Only disease characteristics) | 14,510.4 | 604 | 0.0000000 | |
Asym + Infect + Fatality+Trigger + Intraquar + Interquar + Duration (Without location effects) | 14,004.6 | 98.2 | 0.0000000 | |
Dead | Global | 45,178.1 | 0 | 0.4954626 |
Location + Asym + Infect+ Trigger + Intraquar + Interquar + Duration (Without fatality rate) | 45,235.2 | 57.1 | 0.0000000 | |
Location + Asym + Infect + Fatality + Trigger + Duration (Without short- and long-range quarantine effect) | 45,502.4 | 324.3 | 0.0000000 | |
Location + Trigger + Intraquar + Interquar + Duration (Without disease characteristics) | 45,425.1 | 1216.6 | 0.0000000 | |
Asym + Infect + Fatality (Only disease characteristics) | 45,830.3 | 652.2 | 0.0000000 | |
Asym + Infect + Fatality + Trigger + Intraquar + Interquar + Duration (Without location effects) | 45,298.6 | 120.5 | 0.0000000 | |
Peak | Global | 37,007.7 | 0 | 0.500000 |
Location + Asym + Infect + Trigger + Intraquar + Interquar + Duration (Without fatality rate) | 37,034.2 | 26.5 | 0.000001 | |
Location + Asym + Infect + Fatality + Trigger + Duration (Without short- and long-range quarantine effect) | 37,414.5 | 406.8 | 0.000000 | |
Location + Trigger + Intraquar + Interquar + Duration (Without disease characteristics) | 37,469.8 | 462.1 | 0.000000 | |
Asym + Infect + Fatality (Only disease characteristics) | 37,725.6 | 717.9 | 0.000000 | |
Asym + Infect + Fatality + Trigger + Intraquar + Interquar + Duration (Without location effects) | 37,348.4 | 340.7 | 0.000000 | |
PeakT | Global | 36,914.1 | 0 | 1.000000 |
Location + Asym + Infect + Trigger + Intraquar + Interquar + Duration (Without fatality rate) | 36,942.4 | 36,914.1 | 0.000000 | |
Location + Asym + Infect + Fatality + Trigger+Duration (Without short- and long-range quarantine effect) | 37,296.5 | 382.4 | 0.000000 | |
Location + Trigger + Intraquar + Interquar + Duration (Without disease characteristics) | 37,463.3 | 549.2 | 0.000000 | |
Asym + Infect + Fatality (Only disease characteristics) | 37,725.6 | 811.5 | 0.000000 | |
Asym + Infect + Fatality + Trigger + Intraquar + Interquar + Duration (Without location effects) | 37,157.5 | 549.2 | 0.000000 |
4. Discussion
5. Conclusions
Conflicts of Interest
Author Contributions
Acknowledgments
References
- Wolfe, N.D.; Dunavan, C.P.; Diamond, J. Origins of major human infectious diseases. Nature 2007, 447, 279–283. [Google Scholar] [CrossRef]
- Kao, R.R. The role of mathematical modelling in the control of the 2001 FMD epidemic in the UK. Trends Microbiol. 2002, 10, 279–286. [Google Scholar] [CrossRef]
- Fasina, F.O.; Sirdar, M.M.; Bisschop, S.P.R. The financial cost implications of the highly pathogenic notifiable avian influenza H5N1 in Nigeria. Onderstepoort J. Vet. Res. 2008, 75, 39–46. [Google Scholar]
- Globig, A.; Staubach, C.; Beer, M.; Koppen, U.; Fiedler, W.; Nieburg, M.; Wilking, H.; Starick, E.; Teifke, J.P.; Werner, O.; et al. Epidemiological and ornithological aspects of outbreaks of highly pathogenic Avian influenza virus H5N1 of Asian lineage in wild birds in Germany, 2006 and 2007. Transbound. Emerg. Dis. 2009, 56, 57–72. [Google Scholar] [CrossRef]
- WHO World Health Organization Epidemic and Pandemic Alert and Response. Available online: http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/index.html (accessed on 30 December 2012).
- Shinde, V.; Bridges, C.B.; Uyeki, T.M.; Shu, B.; Balish, A.; Xu, X.; Lindstrom, S.; Gubareva, L.V.; Deyde, V.; Garten, R.J.; et al. Triple-reassortant swine influenza a (H1) in humans in the United States, 2005–2009. N. Engl. J. Med. 2009. [Google Scholar] [CrossRef]
- Lipsitch, M.; Bergstrom, C.T. Invited commentary: Real-time tracking of control measures for emerging infections. Am. J. Epidemiol. 2004, 160, 517–519. [Google Scholar] [CrossRef]
- Cowling, B.J.; Ho, L.M.; Leung, G.M. Effectiveness of control measures during the SARS epidemic in Beijing: A comparison of the Rt curve and the epidemic curve. Epidemiol. Infect. 2008, 136, 562–566. [Google Scholar]
- Fraser, C.; Donnelly, C.A.; Cauchemez, S.; Hanage, W.P.; van Kerkhove, M.D.; Hollingsworth, T.D.; Griffin, J.; Baggaley, R.F.; Jenkins, H.E.; Lyons, E.J.; et al. Pandemic potential of a strain of influenza a (H1N1): Early findings. Science 2009, 324, 1557–1561. [Google Scholar] [CrossRef]
- Garske, T.; Legrand, J.; Donnelly, C.A.; Ward, H.; Cauchemez, S.; Fraser, C.; Ferguson, N.M.; Ghani, A.C. Assessing the severity of the novel influenza a/H1N1 pandemic. Br. Med. J. 2009, 339. [Google Scholar] [CrossRef]
- Bettencourt, L.M.A.; Ribeiro, R.M.; Chowell, G.; Lant, T.; Castillo-Chavez, C. Towards Real Time Epidemiology: Data Assimilation, Modeling and Anomaly Detection of Health Surveillance Data Streams. In Proceedings of the 2007 Intelligence and Security Informatics: Biosurveillance. Second NSF Workshop, New Brunswick, NJ, USA, 22 May 2007; pp. 79–90.
- Watts, D.J.; Strogatz, S.H. Collective dynamics of “small world” networks. Nature 1998, 394, 440–442. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. I. Proc. R. Soc. Lond. A 1927. [Google Scholar] [CrossRef]
- Ferguson, N.M.; Donnelly, C.A.; Anderson, R.M. The foot-and-mouth epidemic in Great Britain: Pattern of spread and impact of interventions. Science 2001, 292, 1155–1160. [Google Scholar] [CrossRef]
- Gao, D.; Cosner, C.; Cantrell, R.S.; Beier, J.C.; Ruan, S. Modeling the spatial spread of rift valley fever in Egypt. Bull. Math. Biol. 2013, 75, 523–542. [Google Scholar] [CrossRef]
- Gilbert, M.; Aktas, S.; Mohammed, H.; Roeder, P.; Sumption, K.; Tufan, M.; Slingenbergh, J. Patterns of spread and persistence of foot-and-mouth disease types A, O and Asia-1 in turkey: A meta-population approach. Epidemiol. Infect. 2005, 133, 537–545. [Google Scholar] [CrossRef]
- Tran, C.; Yost, R.; Yanagida, J.; Saksena, S.; Fox, J.; Sultana, N. Spatio-temporal occurrence modeling of highly pathogenic avian influenza subtype H5N1: A case study in the Red River Delta, Vietnam. ISPRS Int. J. Geo-Inf. 2013, 2, 1106–1121. [Google Scholar] [CrossRef]
- Arino, J.; Jordan, R.; van den Driessche, P. Quarantine in a multi-species epidemic model with spatial dynamics. Math. Biosci. 2007, 206, 46–60. [Google Scholar] [CrossRef]
- Niu, T.; Gaff, H.D.; Papelis, Y.E.; Hartley, D.M. An epidemiological model of rift valley fever with spatial dynamics. Comput. Math. Methods Med. 2012. [Google Scholar] [CrossRef]
- Xue, L.; Scott, H.M.; Cohnstaedt, L.W.; Scoglio, C. A network-based meta-population approach to model rift valley fever epidemics. J. Theor. Biol. 2012, 306, 129–144. [Google Scholar]
- Belsham, G.J. Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure. Progr. Biophys. Mol. Biol. 1993, 60, 241–260. [Google Scholar]
- Rivas, A.L.; Kunsberg, B.; Chowell, G.; Smith, S.D.; Hyman, J.M.; Schwager, S.J. Human-mediated foot-and-mouth disease epidemic dispersal: Disease and vector clusters. J. Vet. Med. Series B 2006, 53, 1–10. [Google Scholar]
- Keeling, M.; Woolhouse, M.E.J.; Shaw, D.J.; Matthews, L.; Chase-Topping, M.; Haydon, D.T.; Cornell, S.J.; Kappey, J.; Wilesmith, J.; Grenfell, B.T. Dynamics of the 2001 UK foot and mouth epidemic: Stochastic dispersal in a heterogeneous landscape. Science 2001, 294, 813–817. [Google Scholar] [CrossRef]
- NASS National Agriculture Statistics Service. Available online: http://www.nass.usda.gov/Census (accessed on 2 September 2009).
- Manore, C.; McMahon, B.; Fair, J.; Hyman, J.; Brown, M.; LaBute, M. Disease properties, geography, and mitigation strategies in a simulation spread of rinderpest across the United States. Vet. Res. 2011, 42. [Google Scholar] [CrossRef]
- Meyer, R.F.; Knudsen, R.C. Foot-and-mouth disease: A review of the virus and the symptoms. J. Environ. Health 2001, 64, 21–23. [Google Scholar]
- Alexandersen, S.; Donaldson, A.I. Further studies to quantify the dose of natural aerosols of foot-and-mouth disease virus for pigs. Epidemiol. Infect. 2002, 128, 313–323. [Google Scholar]
- Callens, M.; de Clercq, K.; Gruia, M.; Danes, M. Detection of foot-and-mouth disease by reverse transcription polymerase chain reaction and virus isolation in contact sheep without clinical signs of foot-and-mouth disease. Vet. Q. 1998, 20, S37–S40. [Google Scholar] [CrossRef]
- Barnett, P.V.; Cox, S.J. The role of small ruminants in the epidemiology and transmission of foot-and-mouth disease. Vet. J. 1999, 158, 6–13. [Google Scholar] [CrossRef]
- Hughes, G.J.; Mioulet, V.; Haydon, D.T.; Kitching, R.P.; Donaldson, A.I.; Woolhouse, M.E. Serial passage of foot-and-mouth disease virus in sheep reveals declining levels of viraemia over time. J. Gen. Virol. 2002, 83, 1907–1914. [Google Scholar]
- Knowles, N.J.; Samuel, A.R. Molecular epidemiology of foot-and-mouth disease virus. Virus Res. 2003, 91, 65–80. [Google Scholar] [CrossRef]
- Donaldson, A.I.; Alexandersen, S. Predicting the spread of foot and mouth disease by airborne virus. Revue Sci. Tech. Off. Int. Epizoot. 2002, 21, 569–575. [Google Scholar]
- Alexandersen, S.; Quan, M.; Murphy, C.; Knight, J.; Zhang, Z. Studies of quantitative parameters of virus excretion and transmission in pigs and cattle experimentally infected with foot-and-mouth disease virus. J. Comp. Pathol. 2003, 129, 268–282. [Google Scholar] [CrossRef]
- Sellers, R.F.; Parker, J. Airborne excretion of foot-and-mouth disease virus. J. Hyg. 1969, 67, 671. [Google Scholar] [CrossRef]
- Shields, M.E. Agro-terrorism, biotechnology, and biosis. J. Agric. Food Inf. 2003, 5, 19–23. [Google Scholar] [CrossRef]
- Carrillo, C.; Lu, Z.; Borca, M.V.; Vagnozzi, A.; Kutish, G.F.; Rock, D.L. Genetic and phenotypic variation of foot-and-mouth disease virus during serial passages in a natural host. J. Virol. 2007, 81, 11341–11351. [Google Scholar] [CrossRef]
- Orsel, K.; Bouma, A.; Dekker, A.; Stegeman, J.A.; de Jong, M.C.M. Foot and mouth disease virus transmission during the incubation period of the disease in piglets, lambs, calves, and dairy cows. Prev. Vet. Med. 2009, 88, 158–163. [Google Scholar] [CrossRef]
- Golde, W.T.; Nfon, C.K.; Toka, F.N. Immune evasion during foot-and-mouth disease virus infection of swine. Immunol. Rev. 2008, 225, 85–95. [Google Scholar] [CrossRef]
- Kitching, R.P.; Hughes, G.J. Clinical variation in foot and mouth disease: Sheep and goats. Revue Sci. Tech. Off. Int. Epizoot. 2002, 21, 505–512. [Google Scholar]
- Donnelly, C.A.; Anderson, R.M. Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain. Nature 2001, 413, 542–548. [Google Scholar] [CrossRef]
- Quan, M.; Murphy, C.M.; Zhang, Z.; Alexandersen, S. Determinants of early foot-and-mouth disease virus dynamics in pigs. J. Comp. Pathol. 2004, 131, 294–307. [Google Scholar]
- Alexandersen, S.; Zhang, Z.; Donaldson, A.I. Aspects of the persistence of foot-and-mouth disease virus in animals: The carrier problem. Microbes Infect. 2002, 4, 1099–1110. [Google Scholar] [CrossRef]
- Vong, S.; Coghlan, B.; Mardy, S.; Holl, D.; Seng, H.; Ly, S.; Miller, M.J.; Buchy, P.; Froehlich, Y.; Dufourcq, J.B.; et al. Low frequency of poultry-to-human H5Ni virus transmission, Southern Cambodia, 2005. Emerg. Infect. Dis. 2006, 12, 1542–1547. [Google Scholar] [CrossRef]
- Marin, C.; Lainez, M. Salmonella detection in feces during broiler rearing and after live transport to the slaughterhouse. Poult. Sci. 2009, 88, 1999–2005. [Google Scholar] [CrossRef]
- Mase, M.; Imada, T.; Nakamura, K.; Tanimura, N.; Imai, K.; Tsukamoto, K.; Yamaguchi, S. Experimental assessment of the pathogenicity of H5N1 influenza a viruses isolated in Japan. Avian Dis. 2005, 49, 582–584. [Google Scholar] [CrossRef]
- Shortridge, K.F.; Zhou, N.N.; Guan, Y.; Gao, P.; Ito, T.; Kawaoka, Y.; Kodihalli, S.; Krauss, S.; Markwell, D.; Murti, K.G.; et al. Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology 1998, 252, 331–342. [Google Scholar] [CrossRef]
- Osterhaus, A.; Poland, G.A. Vaccines against seasonal and avian influenza: Recent advances. Vaccine 2008, 26, D1–D2. [Google Scholar]
- Bouma, A.; Claassen, I.; Natih, K.; Klinkenberg, D.; Donnelly, C.A.; Koch, G.; van Boven, M. Estimation of transmission parameters of H5N1 avian influenza virus in chickens. PLoS Pathog. 2009. [Google Scholar] [CrossRef]
- Latorre-Margalef, N.; Gunnarsson, G.; Munster, V.J.; Fouchier, R.A.M.; Osterhaus, A.; Elmberg, J.; Olsen, B.; Wallensten, A.; Haemig, P.D.; Fransson, T.; et al. Effects of influenza a virus infection on migrating mallard ducks. Proc. R. Soc. B-Biol. Sci. 2009, 276, 1029–1036. [Google Scholar] [CrossRef]
- Sasaki, T.; Kokumai, N.; Ohgitani, T.; Sakamoto, R.; Takikawa, N.; Lin, Z.F.; Okamatsu, M.; Sakoda, Y.; Kida, H. Long lasting immunity in chickens induced by a single shot of influenza vaccine prepared from inactivated non-pathogenic H5N1 virus particles against challenge with a highly pathogenic avian influenza virus. Vaccine 2009, 27, 5174–5177. [Google Scholar] [CrossRef]
- Cagle, C.; Wasilenko, J.; Adams, S.C.; Cardona, C.J.; Thanh Long, T.; Tung, N.; Spackman, E.; Suarez, D.L.; Smith, D.; Shepherd, E.; et al. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam. Avian Dis. 2012, 56, 479–487. [Google Scholar]
- Couch, R.B.; Patel, S.M.; Wade-Bowers, C.L.; Nino, D. A randomized clinical trial of an inactivated avian influenza a (H7N7) vaccine. PLoS One 2012. [Google Scholar] [CrossRef]
- Leung, Y.H.C.; Luk, G.; Sia, S.-F.; Wu, Y.-O.; Ho, C.-K.; Chow, K.-C.; Tang, S.-C.; Guan, Y.; Peiris, J.S.M. Experimental challenge of chicken vaccinated with commercially available H5 vaccines reveals loss of protection to some highly pathogenic avian influenza H5N1 strains circulating in Hong Kong/China. Vaccine 2013, 31, 3536–3542. [Google Scholar] [CrossRef]
- Iwami, S.; Takeuchi, Y.; Liu, X.N.; Nakaoka, S. A geographical spread of vaccine-resistance in avian influenza epidemics. J. Theor. Biol. 2009, 259, 219–228. [Google Scholar] [CrossRef]
- Lebarbenchon, C.; Albespy, F.; Brochet, A.-L.; Grandhomme, V.; Renaud, F.; Fritz, H.; Green, A.J.; Thomas, F.; van der Werf, S.; Aubry, P.; et al. Spread of avian influenza viruses by common teal (anas crecca) in Europe. PLoS One 2009, 4. [Google Scholar] [CrossRef] [Green Version]
- Rivas, A.L.; Chowell, G.; Schwager, S.J.; Fasina, F.O.; Hoogesteijn, A.L.; Smith, S.D.; Bisschop, S.P.R.; Anderson, K.L.; Hyman, J.M. Lessons from Nigeria: The role of roads in the geo-temporal progression of avian influenza (H5N1) virus. Epidemiol. Infect. 2010, 138, 192–198. [Google Scholar] [CrossRef]
- USDA Interstate Livestock Movements. Available online: http://www.ers.usda.gov/Data/InterstateLivestockMovements/ (accessed on 4 March 2009).
- Burnham, M.R.; Peebles, E.D.; Branton, S.L.; Jones, M.S.; P.D., G. Effects of f-strain mycoplasma gallisepticum inoculation at twelve weeks of age on the blood characteristics of commercial egg laying hens. Poult. Sci. 2003, 82, 1397–1402. [Google Scholar] [CrossRef]
- Bates, T.W.; Carpenter, T.E.; Thurmond, M.C. Benefit-cost analysis of vaccination and preemptive slaughter as a means of eradicating foot-and-mouth disease. Am. J. Vet. Res. 2003, 64, 805–812. [Google Scholar] [CrossRef]
- Doeschl-Wilson, A.B.; Davidson, R.; Conington, J.; Roughsedge, T.; Hutchings, M.R.; Villanueva, B. Implications of host genetic variation on the risk and prevalence of infectious diseases transmitted through the environment. Genetics 2011, 188, 683–693. [Google Scholar] [CrossRef]
- Rasmussen, S. Modelling of discrete spatial variation in epidemiology with SAS using Glimmix. Comput. Methods Progr. Biomed. 2004, 76, 83–89. [Google Scholar] [CrossRef]
- Martin, V.; Chevalier, V.; Ceccato, P.; Anyamba, A.; De Simone, L.; Lubroth, J.; de la Rocque, S.; Domenech, J. The impact of climate change on the epidemiology and control of rift valley fever. Revue Sci. Tech.-Off. Int. Epizoot. 2008, 27, 413–426. [Google Scholar]
- Hagerman, A.D.; Ward, M.P.; Anderson, D.P.; Looney, J.C.; McCarl, B.A. Rapid effective trace-back capability value: A case study of foot-and-mouth in the Texas High Plains. Prev. Vet. Med. 2013, 110, 323–328. [Google Scholar] [CrossRef]
- Elbakidze, L.; Highfield, L.; Ward, M.; McCarl, B.A.; Norby, B. Economics analysis of mitigation strategies for FMD introduction in highly concentrated animal feeding regions. Rev. Agric. Econ. 2009, 31, 931–950. [Google Scholar] [CrossRef]
- Bettencourt, L.M.A.; Ribeiro, R.M. Real time bayesian estimation of the epidemic potential of emerging infectious diseases. PLoS One 2008, 3. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
LaBute, M.X.; McMahon, B.H.; Brown, M.; Manore, C.; Fair, J.M. A Flexible Spatial Framework for Modeling Spread of Pathogens in Animals with Biosurveillance and Disease Control Applications. ISPRS Int. J. Geo-Inf. 2014, 3, 638-661. https://doi.org/10.3390/ijgi3020638
LaBute MX, McMahon BH, Brown M, Manore C, Fair JM. A Flexible Spatial Framework for Modeling Spread of Pathogens in Animals with Biosurveillance and Disease Control Applications. ISPRS International Journal of Geo-Information. 2014; 3(2):638-661. https://doi.org/10.3390/ijgi3020638
Chicago/Turabian StyleLaBute, Montiago X., Benjamin H. McMahon, Mac Brown, Carrie Manore, and Jeanne M. Fair. 2014. "A Flexible Spatial Framework for Modeling Spread of Pathogens in Animals with Biosurveillance and Disease Control Applications" ISPRS International Journal of Geo-Information 3, no. 2: 638-661. https://doi.org/10.3390/ijgi3020638
APA StyleLaBute, M. X., McMahon, B. H., Brown, M., Manore, C., & Fair, J. M. (2014). A Flexible Spatial Framework for Modeling Spread of Pathogens in Animals with Biosurveillance and Disease Control Applications. ISPRS International Journal of Geo-Information, 3(2), 638-661. https://doi.org/10.3390/ijgi3020638