Implications in Halotherapy of Aerosols from the Salt Mine Targu Ocna—Structural-Functional Characteristics
<p>Old exploitation room. Halochamber with semi-wet static mode. Area with training and fitness equipment (acquisition of microclimate data at the level of the salt wall).</p> "> Figure 2
<p>Corridor between the old exploitation rooms. Halochamber with semi-wet static regime (retrieving microclimate data from the center of the transition corridor).</p> "> Figure 3
<p>Saltwater lake and waterfall: (<b>a</b>) halochamber with wet dynamic mode; (<b>b</b>) detail with the waterfall area.</p> "> Figure 4
<p>The model of the questionnaire registered for the two analyzed periods (15 September 2021–15 December 2021 and 1 May 2022–30 July 2022) the patients, athletes and tourists present in Salina Tg. Ocna.</p> ">
Abstract
:1. Introduction
2. The Experimental Part
2.1. Monitoring the Three Halochambers
2.2. Methods and Techniques for Determining Microclimate Characteristics and Aerosols from the Three Halochambers
2.3. Evaluation of the Profile of Human Subjects Based on the Results Obtained from the Therapy/Training Activities in the Three Halochambers
- -
- medical, artistic-sports, rhythmic and respiratory gymnastics;
- -
- fitness, jogging and isometric exercises;
- -
- strength training exercises at least twice a week;
- -
- aerobic training with high-intensity exercises (HIIT), alternating short periods of vigorous exercise with short ones, but at a slower pace;
- -
- autogenous relaxation, carried out individually, after its correct appropriation by the patient/athlete;
- -
- active rest by walking slowly or walking along the paths that cover the three halo chambers, respectively by reading or other sports (chess, rummy, billiards, etc.);
- -
- yoga, pilates and meditation are recommended especially in the morning.
- a.
- the intensity of the exercise—the degree of demand compared to the maximum capacity:
- b.
- the duration of the effort,
- c.
- the length of breaks between repetitions
- d.
- the nature of rest
- e.
- volume of effort or number of repetitions.
3. Results and Discussion
Evaluation of the Profile of Human Subjects who Underwent Therapies and Training in the Halochambers of the Salina
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chervinskaya, A.V.; Zilber, N.A. Halotherapy for treatment of respiratory diseases. J. Aerosol. Med. 1995, 8, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Chervinskaya, A.V. Halotherapy in Controlled Salt Chamber Microclimate for Recovering Medicine. Polish J. Balneol. 2007, 2, 133–141. [Google Scholar]
- Chervinskaya, A.V. Halotherapy of respiratory diseases. Physiother. Balneol. Rehabil. 2003, 6, 8–15. [Google Scholar]
- Kanny, G.; Surdu, O.; Boulangé, M. Halothérapie ou spéléothérapie dans les mines de sel. Presse Therm. Clim. 2018, 155, 65–73. [Google Scholar] [CrossRef]
- Kanny, G.; Surdu, O.; Boulange, M. Halothérapie et spéléothérapie: Se soigner dans les mines de sel. Hegel 2019, 9, 26–31. [Google Scholar]
- Chernenkov, R.A.; Chernenkova, E.A.; Zhukov, G.V. The use of an artificial microclimate chamber in the treatment of patients with chronic obstructive lung diseases. Vopr. Kurortol. Fizioter. Lech. Fiz. Kult. 1997, 3, 19–21. [Google Scholar]
- Abdrakhmanova, L.M.; Farkhutdinov, U.R.; Farkhutdinov, R.R. Effectiveness of halotherapy of chronic bronchitis patients. Vopr. Kurortol. Fizioter. Lech. Fiz. Kult. 2000, 6, 21–24. [Google Scholar]
- Horowitz, S. Salt cave therapy: Rediscovering the benefits of an old preservative. Alter. Comp. Ther. 2010, 16, 158–162. [Google Scholar] [CrossRef]
- Sandu, I.; Alexianu, M.; Curcă, R.-G.; Weller, O.; Pascu, C. Halotherapy: From ethnoscience to scientific explanations. Environ. Eng. Manag. J. 2009, 8, 1331–1338. [Google Scholar] [CrossRef]
- Sandu, I.; Chirazi, M.; Canache, M.; Sandu, G.I.; Alexianu, M.T.; Sandu, V.A.; Vasilache, V. Research on NaCl saline aerosols I. Natural and artificial sources and their implications. Environ. Eng. Manag. J. 2010, 9, 881–888. [Google Scholar] [CrossRef]
- Sandu, I.; Poruciuc, A.; Alexianu, M.; Curcă, R.-G.; Weller, O. Salt and Human Health: Science, Archaeology, Ancient Texts and Traditional Practices of Eastern Romania. Mankind Quart. 2010, 50, 225–256. [Google Scholar] [CrossRef]
- Available online: www.tirguocna.ro (accessed on 20 April 2022).
- Sandu, I.; Canache, M.; Sandu, A.V.; Vasilache, V. Aerosolii Salini în Dezvoltarea Copiilor; Editura Universităţii “Alexandru Ioan Cuza”: Iaşi, Romania, 2015. [Google Scholar]
- Sandu, I.; Stirbu, C.; Sandu, A.V.; Stirbu, C. Aerosolii Salini în Îmbunătățirea Performanțelor Sportivilor; Editura Universităţii “Alexandru Ioan Cuza”: Iaşi, Romania, 2015. [Google Scholar]
- Sandu, I.; Sandu, I.G. Solion—A Bioactive Nanostructured Particle. Pharm. Sci. Anal. Res. J. 2019, 2, 1–6. [Google Scholar]
- Sandu, I.; Chirazi, M.; Canache, M.; Sandu, G.I.; Alexianu, M.T.; Sandu, V.A.; Vasilache, V. Research on NaCl saline aerosols II. New artificial halochamber characteristics. Environ. Eng. Manag. J. 2010, 9, 1105–1113. [Google Scholar] [CrossRef]
- Sandu, I.; Canache, M.; Vasilache, V.; Sandu, I.G. The effects of salt solions on the health of human subjects. Present Environ. Sustain. Dev. 2011, 5, 67–88. [Google Scholar]
- Sandu, I.; Pascu, C.; Sandu, I.G.; Ciobanu, G.; Vasile, V.; Ciobanu, O. The obtaining and characterization of NaCl nanocrystalline dispersion for “saline”-type therapeutical media. I. Theoretical aspects. Rev. Chim.-Buchar. 2003, 54, 807–812. [Google Scholar]
- Sandu, I.; Pascu, C.; Sandu, I.G.; Ciobanu, G.; Sandu, A.V.; Ciobanu, O. The obtaining and characterization of NaCl nanocrystalline dispersions for saline—Type therapeutical environments. II. The in situ analysis of saline room aerosols. Rev. Chim.-Buchar. 2004, 55, 791–797. [Google Scholar]
- Sandu, I.; Pascu, C.; Sandu, I.G.; Ciobanu, G.; Sandu, A.V.; Ciobanu, O. The obtaining and characterization of NaCl nanocrystalline dispersions for saline—Type therapeutical climate. III. The evaluation of the SALIN device reliability. Rev. Chim.-Buchar. 2004, 55, 975–982. [Google Scholar]
- Sandu, I.G.; Vasilache, V.; Sandu, A.V.; Chirazi, M.; Honceriu, C.; Crisan-Dabija, R.; Vladescu, A.; Cotrut, C.M.; Sandu, I. The Role of Saline Aerosols in the Prevention and Therapy of Cardio-respiratory and Osteo-muscular Afflictions. Rev. Chim.-Buchar. 2018, 69, 2826–2832. [Google Scholar] [CrossRef]
- Sandu, I.; Canache, M.; Lupascu, T.; Chirazi, M.; Sandu, I.G.; Pascu, C. The Influence of Physically Doping of NaCl with Other Salts on Aerosols and Solions Generation. Aerosol Air Qual. Res. 2013, 13, 1731–1740. [Google Scholar] [CrossRef] [Green Version]
- Ştefan, S. Fizica Aerosolului Atmosferic [The Physics of Athmospheric Aerosol]; Editura All: Bucureşti, Romania, 1998. [Google Scholar]
- Hassan, S.A. Microscopic mechanism of nanlocrystal formation from solution by cluster aggregation and coalescence. J. Chem. Phys. 2011, 134, 114508. [Google Scholar] [CrossRef] [Green Version]
- Alfoldy, B.; Torok, S.; Balashazy, I.; Hofmann, W.; Winkler Heil, R. EPMA and XRF characterization of therapeutic cave aerosol particles and their deposition in the respiratory system. X-RAY Spectrom. 2002, 31, 363–367. [Google Scholar] [CrossRef]
- Haaf, W.; Jaenicke, R. Results of improved size distribution measurements in the Aitken range of atmospheric aerosols. J. Aeronaut. Sci. 1980, 11, 321–330. [Google Scholar] [CrossRef]
- Poryadin, G.V.; Zhuravleva, N.E.; Salmasi, J.M.; Kazimirsky, A.N.; Semenova, L.Y.; Polner, S.A.; Chervinskaya, T.A. Immunological mechanisms of recovery from an acute stage in patients with atopic bronchial asthma. Russ. J. Immunol. 2002, 7, 259–264. [Google Scholar]
- Tang, P.; Chan, H.K.; Tam, E.; de Gruyter, N.; Chan, J. Preparation of NaCl powder suitable for inhalation. Ind. Eng. Chem. Res. 2006, 45, 4188–4192. [Google Scholar] [CrossRef]
- Wang, Z.; King, S.M.; Freney, E.; Rosenoern, T.; Smith, M.L.; Chen, Q.; Kuwata, M.; Lewis, E.R.; Poschl, U.; Wang, W.; et al. The dynamic shape factor of sodium chloride nanoparticles as regulated by drying rate. Aerosol Sci. Technol. 2010, 44, 939–953. [Google Scholar] [CrossRef]
- Anderson, S.D.; Spring, J.; Moore, B.; Rodwell, L.T.; Spalding, N.; Gonda, I.; Chan, K.; Walsh, A.; Clark, A.R. The effect of inhaling a dry powder of sodium chloride on the airways of asthmatic subjects. Eur. Respir. J. 1997, 10, 2465–2473. [Google Scholar] [CrossRef] [Green Version]
- Antoniu, S.A.; Mihăescu, T.; Donner, C.F. Inhaled therapy for stable chronic obstructive pulmonary disease. Expert Opin. Farm. 2007, 8, 777–785. [Google Scholar] [CrossRef]
- Beck-Broichsitter, M.; Gauss, J.; Packhaeuser, C.B.; Lahnstein, K.; Schmehl, T.; Seeger, W.; Kissel, T.; Gessler, T. Pulmonary drug delivery with aerosolizable nanoparticles in an ex vivo lung model. Int. J. Pharm. 2009, 367, 169–178. [Google Scholar] [CrossRef]
- Cho, H.W.; Yoon, C.S.; Lee, J.H.; Lee, S.J.; Viner, A.; Johnson, E.W. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride. Ann. Occup. Hyg. 2011, 55, 666–680. [Google Scholar]
- Gao, Y.; Chen, S.B.; Yu, L.E. Efflorescence relative humidity of airborne sodium chloride particles: A theoretical investigation. Atmos. Environ. 2007, 41, 2019–2023. [Google Scholar] [CrossRef]
- Hu, D.W.; Qiao, L.P.; Chen, J.M.; Ye, X.N.; Yang, X.; Cheng, T.T.; Fang, W. Hygroscopicity of Inorganic Aerosols: Size and Relative Humidity Effects on the Growth Factor. Aerosol Air Qual. Res. 2010, 10, 255–264. [Google Scholar] [CrossRef]
- Ghosal, S.; Hemminger, J.C.; Bluhm, H.; Mun, B.S.; Hebenstreit, E.L.D.; Ketteler, G.; Ogletree, D.F.; Requejo, F.G.; Salmeron, M. Electron spectroscopy of aqueous solution interfaces reveals surface enhancement of halides. Science 2005, 307, 563–566. [Google Scholar] [CrossRef]
- Sullivan, R.C.; Moore, M.J.K.; Petters, M.D.; Kreidenweis, S.M.; Roberts, G.C.; Prather, K.A. Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos. Chem. Phys. 2009, 9, 3303–3316. [Google Scholar] [CrossRef] [Green Version]
- Javaheri, E.; Shemirani, F.M.; Pichelin, M.; Katz, I.M.; Caillibotte, G.; Vehring, R.; Finlay, W.H. Deposition modelling of hygroscopic saline aerosols in the human respiratory tract: Comparison between air and helium–oxygen as carrier gases. J. Aerosol Sci. 2013, 64, 81–93. [Google Scholar] [CrossRef]
- Borishenko, L.V.; Chervinskaia, A.V.; Stepanova, N.G.; Luk’ian, V.S.; Goncharova, V.A.; Pokhodzeĭ, I.V.; Krivitskaia, V.Z.; Vishniakova, L.A.; Pokhaznikova, M.A.; Faustova, M.E. The use of halotherapy for the rehabilitation of patients with acute bronchitis and a protracted and recurent course. Vopr. Kurortol. Fizioter. Lech. Fiz. Kult. 1995, 1, 11–15. [Google Scholar]
- Rabbani, B.; Mohammad Makki, S.S.; Najafizadeh, K.; Khodami Vishteh, H.R.; Shafaghi, S.; Karimi, S.; Mahmoodian, S. Efficacy of Halotherapy for Improvement of Pulmonary function Tests and Quality of Life of Non-Cystic Fibrosis Bronchiectatic Patients. Tanaffos 2013, 12, 22–27. [Google Scholar]
- Maev, E.Z.; Vinogradov, N.V. Halotherapy in the combined treatment of chronic bronchitis patients. Voen.-Meditsinskii Zhurnal 1999, 320, 96. [Google Scholar]
- Gorbenko, P.P.; Adamova, I.V.; Sinitsina, T.M. Bronchial hyperactivity to inhalation of hypo- and hiperosmolar aerosols and its correction by halotherapy. Ter. Arkhiv 1996, 68, 24–28. [Google Scholar]
- Hedman, J.; Hugg, T.; Sandell, J. The effect of salt chamber treatment on bronchial hyperresponsiveness in asthmatics. Allergy 2006, 61, 605–610. [Google Scholar] [CrossRef]
- Riedler, J.; Reade, T.; Robertson, C.F. Repeatability of response to hypertonic saline aerosols in children with mild to sever asthma. Pediatr. Pulmonol. 1994, 18, 330–336. [Google Scholar] [CrossRef]
- Sandu, I.; Stirbu, C.; Lupascu, T.; Stirbu, I.; Sandu, A. Surface Artificial Microsalt Mine for e.g., Treating Psychomotor Disorder, Comprises Front Portion and Sealed Portion with Walls and Ceiling Upholstered with Layers of Hemp or Linen Fabric Impregnated with Solution Containing Sodium Chloride. Patent MD4039 (B1), 31 May 2010. [Google Scholar]
- Sandu, I.; Canache, M.; Lupascu, T.; Sandu, A.; Vasilache, V. Surface Artificial Halochamber Used to Prevent and Treat Cardio-Respiratory and Psychomotor Diseases, Includes Front Room Communicating with Dry Treatment Room, Door and Salt loading Area Which is Built into Anti-Corrosion Metal Frame. Patent MD4040 (B1), 31 May 2010. [Google Scholar]
- Canache, M.; Sandu, A.; Sandu, I.; Sandu, I.G.; Vasilache, V. Artificial Halochamber for Multiple Users, Consists of a Dry Chamber with Ionized Windows with UV Filters. Patent RO126283 (B1), 30 May 2010. [Google Scholar]
- Sandu, A.; Sandu, I.; Stirbu, C.M.; Stirbu, I.C. Artificial Microsaline or Halochamber for Multiple Users, Consisting of a Dry Sealed Chamber, with Ionized Windows, with UV Filters Having a Recess Cut in One of the Walls. Patent RO126284 (B1), 30 May 2010. [Google Scholar]
- Chirazi, M.; Sandu, A.; Sandu, I.; Stirbu, C.M.; Stirbu, I.C. Artificial Halochamber for Multiple Users, Consists of a Dry Chamber with Ionized Windows with UV Filters, Provided on the Door Wall with a Blower with Reversed Action. Patent RO126285 (B1), 30 May 2010. [Google Scholar]
- Sandu, I.; Stirbu, C.; Lupascu, T.; Chirazi, M.; Stirbu, I.; Sandu, A. Artificial Surface Halochamber has Heat Exchanger That Is Provided for Exhaust Air Heating Up to Specific Temperature and Adapted for Providing Relative Air Humidity and Temperature in Room, and Inlet Hood that is Equipped with Filter. Patent MD4089 (B1), 31 January 2011. [Google Scholar]
- Sandu, I.; Canache, M.; Lupascu, T.; Chirazi, M.; Sandu, A.; Vasilache, V.; Sandu, A.V.; Sandu, I.G. Generating Two Types of Saline Aerosols i.e., Dry and Wet, Based on Sodium, Potassium, Magnesium and Calcium Chlorides, for Preventing and Treating Cardiorespiratory and Psychomotor Diseases. Patent MD4239 (B1), 31 July 2013. [Google Scholar]
- Sandu, I.; Canache, M.; Chirazi, M.; Sandu, A.V.; Matei, P.N.; Vasilache, V.; Matei, A.; Sandu, I.G. Artificial Halochamber for Multiple Users and Reactivation Process, Comprises Walls Lined with Waterproofed Films at Distance of Few mm, with Mounted Screen Made of Diaphragms, As Line and Column Network. Patent RO128973 (B1), 29 November 2013. [Google Scholar]
- Sandu, I.G.; Sandu, I.; Sandu, A.V.; Earar, K.; Vasilache, V.; Ştirbu, C.M.; Crișan, D.R.A.; Chirazi, M.; Vladescu, A.; Cotrut, M.C. Self-Controlled Artificial Halochamber has Bubbling Device Vessel That Is Provided at Top of Limewood Grate with Mesh Size to Retain Bubbling Splashes, and Bubbling Flow-Rate Is Controlled to Form Fine Drops Which Partially Touch Grate. Patent RO134028 (A2), 3 April 2020. [Google Scholar]
- Sandu, I.G.; Sandu, I.; Earar, K.; Sandu, A.V.; Vasilache, V.; Ştirbu, C.M.; Crișan, D.R.A.; Chirazi, M.; Vladescu, A.; Cotrut, M.C.; et al. Jacuzzi System for Thermalism with Hydro-Air-Massage and Halochamber Treatments with Solions, Has Bubbling Device Which has Limewood Grate for Retaining Drops, and Is That Half Filled with Salt Solutions Which Are at Saturation Limit. Patent RO134023 (A2), 3 April 2020. [Google Scholar]
- McGraw, R.; Lewis, E.R. Deliquescence and efflorescence of small particles. J. Chem. Phys. 2009, 131, 194705. [Google Scholar] [CrossRef] [Green Version]
- Stirbu, C.; Stirbu, C.; Sandu, I. Impact Assessment of Saline Aerosols on Exercise Capacity of Athletes. Procedia Soc. Behav. Sci. 2012, 46, 4141–4145. [Google Scholar]
- Sandu, I.; Olariu, R.I.; Sandu, I.G.; Stirbu, C.; Pascu, C.; Vasilache, V.; Vione, D.; Arsene, C. Investigation of the dynamics and kinetics involved in saline aerosol generation under air erosion of pure and contaminated halide salts. J. Aerosol Sci. 2015, 81, 100–109. [Google Scholar] [CrossRef]
- Giannuzzi, P.; Mezzani, A.; Saner, H.; Björnstad, H.; Fioretti, P.; Mendes, M.; Cohen-Solal, A.; Dugmore, I.; Hambrecht, R.; Hellemans, I.; et al. Physical activity for primary and secondary prevention. Position paper of the Working Group on Cardiac Rehabilitation and Exercise Physiology of the European Society of Cardiology. Eur. J. Cardiovasc. Prev. Rehabil. 2003, 10, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Percek, A. Terapeutica Naturistă; Colecția Caleidoscop; Editura Ceres: București, Romania, 1987. [Google Scholar]
- Canache, M.; Sandu, I.; Chirazi, M.; Lupascu, T.; Sandu, I.G. Saline aerosols influence on growth staturo-weight children. Present Environ. Sustain. Dev. 2012, 6, 221–234. [Google Scholar]
- Sandu, I.; Canache, M.; Mihaescu, T.; Chirazi, M.; Sandu, A.V.; Trandafir, L.M.; Luca, A.C.; Checherita, L.E. Influence of NaCl Aerosols on the Functional Characteristics of Children. Rev. Chim.-Buchar. 2015, 66, 60–65. [Google Scholar]
- Sandu, I.; Canache, M.; Sandu, A.V.; Chirazi, M.; Mihaescu, T.; Checherita, L.E.; Sandu, I.G. The influence of NaCl aerosols on weight and height development of children. Environ. Monit. Assess. 2015, 187, 15. [Google Scholar] [CrossRef]
- Ochiuz, L.; Popovici, I. Update on the Therapeutic Effect of Saline Aerosols. Pract. Farm. 2014, 7, 125–131. [Google Scholar]
- Mocanu, G.D.; Murariu, G.; Iordan, D.A.; Sandu, I.; Antonovici (Munteanu), M.O. The perception of the online teaching process during the 2 Covid-19 pandemic for the students of the Physical Education and Sports Domain). Appl. Sci. 2021, 11, 5558. [Google Scholar] [CrossRef]
- Mocanu, G.D.; Murariu, G.; Georgescu, L.; Sandu, I. Investigating the attitudes of students of the Faculty of Physical Education and Sports towards online teaching activities during the Covid 19 pandemic. Appl. Sci. 2021, 11, 6328. [Google Scholar] [CrossRef]
- Mocanu, G.D.; Murariu, G.; Iordan, D.A.; Sandu, I. Analysis of the influence of age stages on static plantar pres- 2 sure indicators for Karate Do practitioners (preliminary report). Appl. Sci. 2021, 11, 7320. [Google Scholar] [CrossRef]
Medical Domain Application | The Level of Anhydrous Aerosols (mg/m3) * | The Level in Solions in the Halochamber (mg/m3) ** | Composition of Microgranules (g/L) *** | Working Mode of the Device for Generating Solions **** | References |
---|---|---|---|---|---|
Prevention and treatment of respiratory (airways) disorders | >16 | >8.0 | NaCl = 280–300 | a—73–75 °C; | [1,2,3,19,20,24,25,26,27,29,30,31,32,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56] |
b—0.8–0.9 atm; | |||||
c—1.1–1.2 atm; | |||||
d—55–60 °C; | |||||
e—75–80%UR | |||||
f—72 h | |||||
Treatment of high blood pressure | >20 | >10.0 | NaCl = 250–280 KCl = 380–400, MgCl2 = 320–350 The ratio: NaCl:KCl:MgCl2 = 8:1:1 | a—73–75 °C; | [20,29,30,31,32,45,46,47,48,49,50,51,52,53,54,55,56] |
b—0.8–0.9 atm; | |||||
c—1.2–1.3 atm; | |||||
d—55–60 °C; | |||||
e—75–80%UR | |||||
f—54 h | |||||
Thyroid gland disease therapy | >24 | >12.0 | NaCl = 250–280 KI = 130–150 The ratio: NaCl:KCl = 9.5:0.5 | a—73–75 °C; | [20,29,30,31,32,45,46,47,48,49,50,51,52,53,54,55,56] |
b—0.8–0.9 atm; | |||||
c—1.2–1.3 atm; | |||||
d—55–60 °C; | |||||
e—75–80%UR | |||||
f—54 h | |||||
Psychomotor disorders | Between 2–12 | between 1.0–6.0 | NaCl = 230–250 KCl = 380–400 MgCl2 = 320–350 CaCl2 = 420–450 The ratio: NaCl:KCl:MgCl2:CaCl2 = 8:1:0.6:0.4 | a—73–75 °C; | [20,29,30,31,32,45,46,47,48,49,50,51,52,53,54,55,56,57] |
b—0.8–0.9 atm; | |||||
c—1.1–1.2 atm; | |||||
d—50–55 °C; | |||||
e—55–60%UR | |||||
f—48 h | |||||
Treating neuro-motor disorders and improving physical performance in children, the elderly and people working in high effort conditions | between 2–12 | between 1.0–6.0 | NaCl = 230–250 KCl = 380–400 MgCl2 = 320–350 CaCl2 = 420–450 The ratio: NaCl:KCl:MgCl2:CaCl2 = 8:1:0.6:0.4 | a—73–75 °C; | [20,29,30,31,32,45,46,47,48,49,50,51,52,53,54,55,56,57] |
b—0.8–0.9 atm; | |||||
c—1.1–1.2 atm; | |||||
d—50–55 °C; | |||||
e—55–60%UR | |||||
f—48 h | |||||
Improving the performance of young athletes | between 1.2–2.0 | between 0.6–1.0 | NaCl = 250–280 KCl = 380–400 MgCl2 = 320–350 KI = 130–150 The ratio: NaCl:KCl:MgCl2:KI = 8.5:0.85:0.6:0.05 | a—73–75 °C; | [20,29,30,31,32,45,46,47,48,49,50,51,52,53,54,55,56,57,58] |
b—0.8–0.9 atm; | |||||
c—1.1–1.2 atm; | |||||
d—50–55 °C; | |||||
e—55–60%UR | |||||
f—48 h | |||||
Preventing or stopping the formation of biofilms on the surfaces of prostheses for bone and teeth implants | >16 | >8.0 | NaCl = 280–300 | a—73–75 °C; | [20,29,30,31,32,45,46,47,48,49,50,51,52,53,54,55,56] |
b—0.8–0.9 atm; | |||||
c—1.1–1.2 atm; | |||||
d—55–60 °C; | |||||
e—75–80%UR | |||||
f—72 h |
Characteristics | Halocahamber SSR | Halochamber DSR | Halochamber DWR | ||||||
---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Average | Min. | Max. | Average | Min. | Max. | Average | |
Temperature (°C) | 12.7 | 13.5 | 13.1 | 12.4 | 13.2 | 12.8 | 12.1 | 12.5 | 12.3 |
Relative humidity (%) | 70 | 74 | 72 | 71 | 77 | 74 | 90 | 96 | 93 |
Atmospheric pressure (mmHg) | 748 | 752 | 750 | 739 | 741 | 740 | 758 | 762 | 760 |
Light (lx) | 88 | 92 | 90 | 79 | 81 | 80 | 104 | 108 | 106 |
Concentration CO2 (%) | 0.075 | 0.085 | 0.08 | 0.062 | 0.078 | 0.07 | 0.058 | 0.062 | 0.06 |
Concentration O2 (%) | 20.7 | 20.9 | 20.8 | 20.8 | 21.0 | 20.9 | 20.9 | 21.2 | 21.1 |
The Type of Particles | Halochamber | Measuring Time (s) | Logging Interval Counting Tool (s) | Minimum Aerosol Density (mg/m3) | Maximum Aerosol Density (mg/m3) | Average Aerosol Density (mg/m3) | Observations |
---|---|---|---|---|---|---|---|
PM1 | SSR | 60 | 1 | 0.025 | 0.068 | 0.030 | The lowest level with very small differences between the concentrations of solions of different sizes |
PM2.5 | SSR | 60 | 1 | 0.032 | 0.047 | 0.036 | |
PM4 | SSR | 60 | 1 | 0.036 | 0.199 | 0.045 | |
PM10 | SSR | 60 | 1 | 0.071 | 0.080 | 0.047 | |
PM1 | DSR | 60 | 1 | 0.027 | 0.067 | 0.032 | A higher level with small differences between the concentrations of solions of different sizes |
PM2.5 | DSR | 60 | 1 | 0.040 | 0.103 | 0.046 | |
PM4 | DSR | 60 | 1 | 0.044 | 0.063 | 0.049 | |
PM10 | DSR | 60 | 1 | 0.047 | 0.102 | 0.059 | |
PM1 | DWR | 60 | 1 | 0.041 | 0.055 | 0.046 | The highest level in solions, with big differences between the four granulometric groups |
PM2.5 | DWR | 60 | 1 | 0.057 | 0.087 | 0.067 | |
PM4 | DWR | 60 | 1 | 0.059 | 0.130 | 0.099 | |
PM10 | DWR | 60 | 1 | 0.068 | 0.185 | 0.117 |
Goal | People (%) | Contaminated with COVID, with a Negative Test (%) | Gender and Age Group | Duration (Minutes) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | SSR | DSR | DWR | |||||||
Total (%) | ≤35 years (%) | ˃35 years (%) | Total (%) | ≤35 years (%) | ˃35 years (%) | ||||||
Treatment | 72.99 | 15.64 | 31.53 | 14.35 | 17.18 | 41.46 | 18.56 | 22.90 | 1–5 | 3–6 | 10–20 |
Workouts | 7.59 | 1.89 | 4.22 | 4.22 | - | 3.37 | 3.37 | - | 1–3 * | 10–30 * | 2–6 * |
Relaxation/visit | 19.42 | 3.03 | 9.86 | 4.64 | 5.22 | 9.56 | 4.22 | 5.34 | 1–3 | 3–5 | 5–10 |
Type of Halochamber and Group of Subjects | The Working Mode of the Halochamber | Semi-Wet Static Regime (SSR) | Semi-Wet Dynamic Regime (DSR) | Wet Dynamic Regime (DWR) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Profile of Activities | Activities (%) | Gender | Gender | Gender | ||||||||||
Male | Female | Male | Female | Male | Female | |||||||||
Age Group (Years) | Age Group (Years) | Age Group (Years) | Age Group (Years) | Age Group (Years) | Age Group (Years) | |||||||||
˂35 | ≥35 | ˂35 | ≥35 | ˂35 | ≥35 | ˂35 | ≥35 | ˂35 | ≥35 | ˂35 | ≥35 | |||
Treatments and other activities (Total) | 100 a/72.99 b | - d | - d | - d | - d | - e | - e | - e | - e | 15.65/9.70 f | 19.38/12.02 f | 18.56/14.55 f | 23.21/18.11 f | |
COVID recovery | 15.64 | - d | - d | - d | - d | - e | - e | - e | - e | 3.18/2.02 f | 3.95/3.42 f | 3.78/3.12 f | 4.73/3.57 f | |
Lung disorders | 32.82 a/12.8 c | - d | - d | - d | - d | - e | - e | - e | - e | 6.69/4.09 f | 8.28/5.04 f | 7.93/6.34 f | 9.92/8.44 f | |
Heart disorders | 13.11 a/4.3 c | - d | - d | - d | - d | - e | - e | - e | - e | 2.87/1.87 f | 3.31/2.15 f | 3.17/2.54 f | 3.96/3.57 f | |
Tyroid and immunity system disorders | 6.80 a/1.1 c | - d | - d | - d | - d | - e | - e | - e | - e | 1.19/0.82 f | 1.72/1.18 f | 1.64/0.87 f | 2.05/1.68 f | |
Psycho-neuro-motor recovery | 4.62 a/0.2 c | - d | - d | - d | - d | - e | - e | - e | - e | 1.72/0.90 f | 1.17/0.23 f | 1.11/0.75 f | 1.40/0.85 f | |
Sport workouts | 7.59 a/1.89 c | 4.22 | - | 3.37 | - | - e | - e | - e | - e | - g | - g | - g | - g | |
Relaxation | 19.42 a/3.03 c | 4.64 | 4.22 | 4.22 | 2.53 | - e | - e | - e | - e | - g | - g | - g | - g |
Treatments | Percentage (%) | Men | Women | ||
---|---|---|---|---|---|
˂35 | ≥35 | ˂35 | ≥35 | ||
Therapy cases (Total) | 72.99/34.04 b | 14.35/9.70 43.20 | 17.18/12.02 | 18.56/14.55 56.80 | 22.90/18.11 |
COVID recovery | 15.64 a | 3.18/2.02 45.59 | 3.95/3.42 | 3.78/3.12 54.41 | 4.73/3.57 |
Lung disorders | 31.97/12.8 c | 5.32/4.09 38.63 | 7.03/5.04 | 8.86/6.34 61.37 | 10.76/8.44 |
Heart disorders | 13.38/4.3 c | 2.94/1.87 46.71 | 3.31/2.15 | 3.17/2.54 53.29 | 3.96/3.57 |
Diseases of the thyroid and the immune system | 6.60/1.1 c | 1.19/0.82 44.09 | 1.72/1.18 | 1.64/0.87 55.91 | 2.05/1.68 |
Psycho-neuro-motor recovery | 5.40/0.2 c | 1.72/0.90 53.52 | 1.17/0.23 | 1.11/0.75 46.48 | 1.40/0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonovici, M.O.; Sandu, I.G.; Vasilache, V.; Sandu, A.V.; Arcana, S.; Arcana, R.I.; Sandu, I. Implications in Halotherapy of Aerosols from the Salt Mine Targu Ocna—Structural-Functional Characteristics. Healthcare 2023, 11, 2104. https://doi.org/10.3390/healthcare11142104
Antonovici MO, Sandu IG, Vasilache V, Sandu AV, Arcana S, Arcana RI, Sandu I. Implications in Halotherapy of Aerosols from the Salt Mine Targu Ocna—Structural-Functional Characteristics. Healthcare. 2023; 11(14):2104. https://doi.org/10.3390/healthcare11142104
Chicago/Turabian StyleAntonovici (Munteanu), Mihaela Orlanda, Ioan Gabriel Sandu, Viorica Vasilache, Andrei Victor Sandu, Stefanita Arcana, Raluca Ioana Arcana, and Ion Sandu. 2023. "Implications in Halotherapy of Aerosols from the Salt Mine Targu Ocna—Structural-Functional Characteristics" Healthcare 11, no. 14: 2104. https://doi.org/10.3390/healthcare11142104
APA StyleAntonovici, M. O., Sandu, I. G., Vasilache, V., Sandu, A. V., Arcana, S., Arcana, R. I., & Sandu, I. (2023). Implications in Halotherapy of Aerosols from the Salt Mine Targu Ocna—Structural-Functional Characteristics. Healthcare, 11(14), 2104. https://doi.org/10.3390/healthcare11142104