Unveiling Anomalies in Terrain Elevation Products from Spaceborne Full-Waveform LiDAR over Forested Areas
<p>Study area and the geolocation of GLAS and GEDI data.</p> "> Figure 2
<p>Flowchart of this study.</p> "> Figure 3
<p>Spatial distribution of terrain elevation anomalies in the GLAS and GEDI datasets.</p> "> Figure 4
<p>Scatter plot of terrain elevation estimates obtained from GLAS (<b>a</b>) and GEDI (<b>b</b>) vs. the terrain elevation derived from airborne laser scanning (ALS) as a reference. A0 denotes the default algorithm of the GEDI L2A product.</p> "> Figure 5
<p>Details of terrain elevation outliers from GLAS: scatter plot of terrain elevation from data acquired during nighttime (<b>a</b>) and daytime (<b>b</b>) before removing outliers, scatter plot (<b>c</b>), transmitted waveforms (<b>d</b>), the histogram of the data acquisition time (<b>e</b>), and the histogram of Signal-to-Noise Ratio (SNR) (<b>f</b>) of source laser shot of the outliers.</p> "> Figure 6
<p>Details of terrain elevation outliers from GEDI: scatter plot of terrain elevation from data acquired during nighttime (<b>a</b>) and daytime (<b>b</b>) before removing outliers, scatter plot (<b>c</b>), transmitted waveforms (<b>d</b>), the histogram (<b>e</b>) of the beam type (<b>e1</b>) and data acquisition time (<b>e2</b>), and the histogram of sensitivity (<b>f</b>) of source laser shot of the outliers.</p> "> Figure 7
<p>Examples with small (upper panel) and large (lower panel) terrain elevation error: the three-dimensional scene (<b>left</b>), the transmitted waveform (<b>middle</b>), and the return waveform (<b>right</b>) of GLAS and GEDI with the terrain elevation from product and airborne laser scanning (ALS) data illustrated. In the lower panel (<b>right</b>), the ALS terrain elevation is not indicated since the GLAS or GEDI terrain elevation exceeds ALS by more than 330 m (see outlier-27 and outlier-12 indicated in green circles in <a href="#forests-15-01821-f005" class="html-fig">Figure 5</a> and <a href="#forests-15-01821-f006" class="html-fig">Figure 6</a>c). A<<span class="html-italic">n</span>> (<span class="html-italic">n</span>: 1–6) denotes the terrain elevation from six different algorithm groups of GEDI.</p> "> Figure 8
<p>Scatter plot of canopy height estimates for laser shots of terrain elevation anomalies obtained from GEDI L2A product versus the canopy height derived from airborne laser scanning (ALS) as a reference (the legend of the point density applies to all the figures). A0 denotes the default algorithm (<b>a</b>), and A<<span class="html-italic">n</span>> (<span class="html-italic">n</span>: 1–6) denotes the other six algorithm groups (<b>b</b>–<b>g</b>).</p> "> Figure A1
<p>Probability density of “sensitivity” of “power” and “coverage” beams estimated by different algorithms (<b>a</b>–<b>f</b>) of GEDI using the data with “sensitivity > 0.90” in all footprints. A0 denotes the default algorithm setting (<b>a</b>), and A<n> (n: 1–6) denotes the other six algorithm groups (<b>b</b>–<b>g</b>).</p> "> Figure A2
<p>Original GLAS (<b>upper panel</b>) and GEDI (<b>lower panel</b>) waveform examples of terrain elevation anomalies with terrain elevation provided by GLAS and GEDI product indicated. A0 denotes the default algorithm, and A<<span class="html-italic">n</span>> (<span class="html-italic">n</span>: 1–6) denotes the other six algorithm groups of GEDI.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Airborne Laser Scanning Data
2.3. Spaceborne Full-Waveform LiDAR Data Processing
2.3.1. GLAS Data Processing
2.3.2. GEDI Data Processing
2.4. Terrain Elevation Anomalies Extraction and Analysis
3. Results
3.1. Comparison of Terrain Elevations Acquired from Spaceborne and Airborne LiDAR Data
3.2. Characteristics of Terrain Elevation Anomalies
4. Discussion
4.1. Origins of Terrain Elevation Anomalies and the Potential of GEDI in Atmospheric Science
4.2. Data Filtering Recommendations for Forest Parameters Extraction to Avoid the Influence of Abnormal Return Signals
4.3. Future Research Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chen, Q. Assessment of Terrain Elevation Derived from Satellite Laser Altimetry over Mountainous Forest Areas Using Airborne Lidar Data. ISPRS J. Photogramm. Remote Sens. 2010, 65, 111–122. [Google Scholar] [CrossRef]
- Afzal, R.S.; Yu, A.W.; Dallas, J.L.; Melak, A.; Lukemire, A.T.; Ramos-Izqueirdo, L.; Mamakos, W. The Geoscience Laser Altimeter System (GLAS) Laser Transmitter. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 511–535. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Dubayah, R.; Tang, H.; Armston, J.; Luthcke, S.; Hofton, M.; Blair, J.B. GEDI L2B Canopy Cover and Vertical Profile Metrics Data Global Footprint Level V002 [Data Set]; U.S. Government, NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar]
- Dubayah, R.; Hofton, M.; Blair, J.B.; Armston, J.; Tang, H.; Luthcke, S. GEDI L2A Elevation and Height Metrics Data Global Footprint Level V002 [Data Set]; U.S. Government, NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar]
- Zwally, H.J.; Schutz, R.; Bentley, C.; Bufton, J.; Herring, T.; Minster, J.; Spinhirne, J.; Thomas, R. GLAS/ICESat L2 Global Land Surface Altimetry Data, Version 34 [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC): Boulder, CO, USA, 2014. [Google Scholar]
- Dubayah, R.; Armston, J.; Healey, S.P.; Bruening, J.M.; Patterson, P.L.; Kellner, J.R.; Duncanson, L.; Saarela, S.; Ståhl, G.; Yang, Z.; et al. GEDI Launches a New Era of Biomass Inference from Space. Environ. Res. Lett. 2022, 17, 095001. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; Pascual, A. Using GEDI Lidar Data and Airborne Laser Scanning to Assess Height Growth Dynamics in Fast-Growing Species: A Showcase in Spain. For. Ecosyst. 2021, 8, 1–17. [Google Scholar] [CrossRef]
- Hoffrén, R.; Lamelas, M.T.; de la Riva, J.; Domingo, D.; Montealegre, A.L.; García-Martín, A.; Revilla, S. Assessing GEDI-NASA System for Forest Fuels Classification Using Machine Learning Techniques. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103175. [Google Scholar] [CrossRef]
- Wang, C.; Elmore, A.J.; Numata, I.; Cochrane, M.A.; Shaogang, L.; Huang, J.; Zhao, Y.; Li, Y. Factors Affecting Relative Height and Ground Elevation Estimations of GEDI among Forest Types across the Conterminous USA. GIScience Remote Sens. 2022, 59, 975–999. [Google Scholar] [CrossRef]
- Hayashi, M.; Saigusa, N.; Oguma, H.; Yamagata, Y. Forest Canopy Height Estimation Using ICESat/GLAS Data and Error Factor Analysis in Hokkaido, Japan. ISPRS J. Photogramm. Remote Sens. 2013, 81, 12–18. [Google Scholar] [CrossRef]
- Zhu, X.; Nie, S.; Wang, C.; Xi, X.; Lao, J.; Li, D. Consistency Analysis of Forest Height Retrievals between GEDI and ICESat-2. Remote Sens. Environ. 2022, 281, 113244. [Google Scholar] [CrossRef]
- Cobb, A.R.; Dommain, R.; Sukri, R.S.; Metali, F.; Bookhagen, B.; Harvey, C.F.; Tang, H. Improved Terrain Estimation from Spaceborne Lidar in Tropical Peatlands Using Spatial Filtering. Sci. Remote Sens. 2023, 7, 100074. [Google Scholar] [CrossRef]
- Adam, M.; Urbazaev, M.; Dubois, C.; Schmullius, C. Accuracy Assessment of Gedi Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sens. 2020, 12, 3948. [Google Scholar] [CrossRef]
- Pronk, M.; Ledoux, H.; Eleveld, M. Assessing Vertical Accuracy and Spatial Coverage of ICESat-2 and GEDI Spaceborne Lidar for Creating Global Terrain Models. Remote Sens. 2024, 16, 2259. [Google Scholar] [CrossRef]
- Narin, O.G.; Lindenbergh, R.; Abdikan, S. Multi-Criteria Strategy for Estimating GEDI Terrain Height. In Proceedings of the 10th International Conference on Recent Advances in Air and Space Technologies, RAST 2023, Istanbul, Turkey, 7–9 June 2023. [Google Scholar]
- Urbazaev, M.; Hess, L.L.; Hancock, S.; Sato, L.Y.; Ometto, J.P.; Thiel, C.; Dubois, C.; Heckel, K.; Urban, M.; Adam, M.; et al. Assessment of Terrain Elevation Estimates from ICESat-2 and GEDI Spaceborne LiDAR Missions across Different Land Cover and Forest Types. Sci. Remote Sens. 2022, 6, 100067. [Google Scholar] [CrossRef]
- Liu, A.; Cheng, X.; Chen, Z. Performance Evaluation of GEDI and ICESat-2 Laser Altimeter Data for Terrain and Canopy Height Retrievals. Remote Sens. Environ. 2021, 264, 112571. [Google Scholar] [CrossRef]
- Enßle, F.; Heinzel, J.; Koch, B. Accuracy of Vegetation Height and Terrain Elevation Derivedfrom ICESat/GLAS in Forested Areas. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 37–44. [Google Scholar] [CrossRef]
- Jiang, H.; Yan, G.; Tong, Y.; Cheng, S.; Yang, X.; Hu, R.; Li, L.; Mu, X.; Xie, D.; Zhang, W.; et al. Correcting Crown-Level Clumping Effect for Improving Leaf Area Index Retrieval from Large-Footprint LiDAR: A Study Based on the Simulated Waveform and GLAS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12386–12402. [Google Scholar] [CrossRef]
- Yang, X.; Wang, C.; Pan, F.; Nie, S.; Xi, X.; Luo, S. Retrieving Leaf Area Index in Discontinuous Forest Using ICESat/GLAS Full-Waveform Data Based on Gap Fraction Model. ISPRS J. Photogramm. Remote Sens. 2019, 148, 54–62. [Google Scholar] [CrossRef]
- Duncanson, L.I.; Niemann, K.O.; Wulder, M.A. Estimating Forest Canopy Height and Terrain Relief from GLAS Waveform Metrics. Remote Sens. Environ. 2010, 114, 138–154. [Google Scholar] [CrossRef]
- Cui, L.; Jiao, Z.; Zhao, K.; Sun, M.; Dong, Y.; Yin, S.; Li, Y.; Chang, Y.; Guo, J.; Xie, R.; et al. Retrieval of Vertical Foliage Profile and Leaf Area Index Using Transmitted Energy Information Derived from ICESat GLAS Data. Remote Sens. 2020, 12, 2457. [Google Scholar] [CrossRef]
- Shu, S.; Liu, H.; Frappart, F.; Huang, Y.; Wang, S.; Hinkel, K.M.; Beck, R.A.; Yu, B.; Jones, B.M.; Arp, C.D.; et al. Estimation of Snow Accumulation over Frozen Arctic Lakes Using Repeat ICESat Laser Altimetry Observations—A Case Study in Northern Alaska. Remote Sens. Environ. 2018, 216, 529–543. [Google Scholar] [CrossRef]
- Zwally, H.J.; Schutz, R.; Bentley, C.; Bufton, J.; Herring, T.; Minster, J.; Spinhirne, J.; Thomas, R. GLAS/ICESat L1B Global Waveform-Based Range Corrections Data, Version 34 [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC): Boulder, CO, USA, 2014. [Google Scholar]
- Hofton, M.; Blair, J.B. Algorithm Theoretical Basis Document (ATBD) for GEDI Transmit and Receive Waveform Processing for L1 and L2 Products. 2019. Available online: https://lpdaac.usgs.gov/documents/581/GEDI_WF_ATBD_v1.0.pdf (accessed on 1 January 2024).
- Beck, J.; Armston, J.; Hofton, M.; Luthcke, S.; Tang, H. GLOBAL Ecosystem Dynamics Investigation (GEDI) Level 2 User Guide Version 2 (University of Maryland, NASA Goddard Space Flight Center, KBR Greenbelt). 2021; pp. 1–25. Available online: https://lpdaac.usgs.gov/documents/986/GEDI02_UserGuide_V2.pdf (accessed on 1 January 2024).
- Hancock, S.; Armston, J.; Hofton, M.; Sun, X.; Tang, H.; Duncanson, L.I.; Kellner, J.R.; Dubayah, R. The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions. Earth Sp. Sci. 2019, 6, 294–310. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Shao, J.; Yan, C.; Zhang, J.; Qiao, Y.; Pan, Y.; Yuan, J.; Dong, Y.; Yu, B. Near-Ultraviolet to near-Infrared Band Thresholds Cloud Detection Algorithm for Tansat-Capi. Remote Sens. 2021, 13, 1906. [Google Scholar] [CrossRef]
- Hart, W.D.; Spinhirne, J.D.; Palm, S.P.; Hlavka, D.L. Height Distribution between Cloud and Aerosol Layers from the GLAS Spaceborne Lidar in the Indian Ocean Region. Geophys. Res. Lett. 2005, 32, L22S06. [Google Scholar] [CrossRef]
- Spinhirne, J.D.; Palm, S.P.; Hart, W.D.; Hlavka, D.L.; Welton, E.J. Cloud and Aerosol Measurements from GLAS: Overview an Initial Results. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, X.; Gong, P.; Huang, H.; Li, Z.; Li, X. Earth Science Applications of ICESat/GLAS. Int. J. Remote Sens. 2011, 32, 8837–8864. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Protat, A.; Bouniol, D.; O’Connor, E.J.; Baltink, H.K.; Verlinde, J.; Widener, K. CloudSat as a Global Radar Calibrator. J. Atmos. Ocean. Technol. 2011, 28, 445–452. [Google Scholar] [CrossRef]
- Lambert, F.H.; Webb, M.J.; Yoshimori, M.; Yokohata, T. The Cloud Radiative Effect on the Atmospheric Energy Budget and Global Mean Precipitation. Clim. Dyn. 2015, 44, 2301–2325. [Google Scholar] [CrossRef]
- Zhou, C.; Zelinka, M.D.; Klein, S.A. Impact of Decadal Cloud Variations on the Earth’s Energy Budget. Nat. Geosci. 2016, 9, 871–874. [Google Scholar] [CrossRef]
- Li, Y.; Gao, S.; Fu, H.; Zhu, J.; Hu, Q.; Zeng, D.; Wei, Y. Error Analysis and Accuracy Improvement in Forest Canopy Height Estimation Based on GEDI L2A Product: A Case Study in the United States. Forests 2024, 15, 1536. [Google Scholar] [CrossRef]
- Doyog, N.D.; Lin, C. Generating Wall-to-Wall Canopy Height Information from Discrete Data Provided by Spaceborne LiDAR System. Forests 2024, 15, 482. [Google Scholar] [CrossRef]
- Ni, W.; Li, Z.; Wang, Q.; Zhang, Z.; Liu, Q.; Pang, Y.; He, Y.; Li, Z.; Sun, G. Forest Heights Extraction Using GF-7 Very High-Resolution Stereoscopic Imagery and Google Earth Multi-Temporal Historical Imagery. J. Remote Sens. 2024, 4, 0158. [Google Scholar] [CrossRef]
- Zhang, G.; Ganguly, S.; Nemani, R.R.; White, M.A.; Milesi, C.; Hashimoto, H.; Wang, W.; Saatchi, S.; Yu, Y.; Myneni, R.B. Estimation of Forest Aboveground Biomass in California Using Canopy Height and Leaf Area Index Estimated from Satellite Data. Remote Sens. Environ. 2014, 151, 44–56. [Google Scholar] [CrossRef]
- García, M.; Riaño, D.; Chuvieco, E.; Danson, F.M. Estimating Biomass Carbon Stocks for a Mediterranean Forest in Central Spain Using LiDAR Height and Intensity Data. Remote Sens. Environ. 2010, 114, 816–830. [Google Scholar] [CrossRef]
- Duncanson, L.; Kellner, J.R.; Armston, J.; Dubayah, R.; Minor, D.M.; Hancock, S.; Healey, S.P.; Patterson, P.L.; Saarela, S.; Marselis, S.; et al. Aboveground Biomass Density Models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) Lidar Mission. Remote Sens. Environ. 2022, 270, 112845. [Google Scholar] [CrossRef]
- Jiang, H.; Cheng, S.; Yan, G.; Kuusk, A.; Hu, R.; Tong, Y.; Mu, X.; Xie, D.; Zhang, W.; Zhou, G.; et al. Clumping Effects in Leaf Area Index Retrieval from Large-Footprint Full-Waveform LiDAR. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–20. [Google Scholar] [CrossRef]
- Clark, D.B.; Olivas, P.C.; Oberbauer, S.F.; Clark, D.A.; Ryan, M.G. First Direct Landscape-Scale Measurement of Tropical Rain Forest Leaf Area Index, a Key Driver of Global Primary Productivity. Ecol. Lett. 2008, 11, 163–172. [Google Scholar] [CrossRef]
- Rishmawi, K.; Huang, C.; Zhan, X. Monitoring Key Forest Structure Attributes across the Conterminous United States by Integrating Gedi Lidar Measurements and Viirs Data. Remote Sens. 2021, 13, 442. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Ding, J.; Guo, Z.; Tang, S.; Liu, R.; Chen, J. A Combined GLAS and MODIS Estimation of the Global Distribution of Mean Forest Canopy Height. Remote Sens. Environ. 2016, 174, 24–43. [Google Scholar] [CrossRef]
- Gwenzi, D.; Lefsky, M.A. Modeling Canopy Height in a Savanna Ecosystem Using Spaceborne Lidar Waveforms. Remote Sens. Environ. 2014, 154, 338–344. [Google Scholar] [CrossRef]
Mission | GLAS | GEDI |
---|---|---|
Products used | GLA14: used to extract terrain elevation | L2A: used to extract terrain elevation |
GLA01: mainly used to illustrate the waveform | L1B: mainly used to illustrate the waveform | |
GLA05: used to extract the cloud flag | ||
Version | Release 34 | Version 2 |
Terrain parameter | d_elev (elevation relative to the Topex ellipsoid) | elev_lowestmode (elevation relative to the WGS84 ellipsoid) |
Other key parameters used | d_satElevCorr: used to correct the elevation; d_deltaEllip: used to convert elevation from the Topex to WGS84 ellipsoid | quality_flag, degrade_flag, sensitivity: used to filter the samples |
d_gpCntRngOff, d_ldRngOff, d_GmC: used to compute the elevation at the location of the last mode | beam: used to identify the “power” and “coverage” beams | |
d_SolAng: used to judge the data acquisition time (daytime, d_SolAng > 0) | solar_elevation: used to evaluate the data acquisition time (daytime, solar_elevation > 0) | |
d_maxRecAmp, d_sDevNsOb1: used to compute the Signal-to-Noise Ratio (SNR) [23], usually used to quantify the level of signal relative to the level of background noise. () | ||
d_lon, d_lat: geolocation of the footprint | lon_lowestmode, lat_lowestmode: geolocation of the footprint | |
r_tx_wf, r_rng_wf: transmitted and return waveform | txwaveform, rxwaveform: transmitted and return waveform |
Algorithm | Terrain Elevation Anomalies | Normal Data | ||||||
---|---|---|---|---|---|---|---|---|
n | R2 | RMSE (m) | MAE (m) | n | R2 | RMSE (m) | MAE (m) | |
A0 | 138 | 0.54 | 267.2 | 250.3 | 29,524 | 0.99 | 8.5 | 5.0 |
A1 | 145 | 0.52 | 290.1 | 272.6 | 27,600 | 0.99 | 10.7 | 6.5 |
A2 | 159 | 0.56 | 257.0 | 237.9 | 30,676 | 0.99 | 8.1 | 4.8 |
A3 | 148 | 0.52 | 288.3 | 270.4 | 28,880 | 0.99 | 9.7 | 5.9 |
A4 | 146 | 0.51 | 288.5 | 269.2 | 27,600 | 0.99 | 10.7 | 6.5 |
A5 | 151 | 0.57 | 246.2 | 226.8 | 30,968 | 0.99 | 9.9 | 7.0 |
A6 | 152 | 0.53 | 269.6 | 249.6 | 30,195 | 0.99 | 8.4 | 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Li, Y.; Yan, G.; Li, W.; Li, L.; Yang, F.; Ding, A.; Xie, D.; Mu, X.; Li, J.; et al. Unveiling Anomalies in Terrain Elevation Products from Spaceborne Full-Waveform LiDAR over Forested Areas. Forests 2024, 15, 1821. https://doi.org/10.3390/f15101821
Jiang H, Li Y, Yan G, Li W, Li L, Yang F, Ding A, Xie D, Mu X, Li J, et al. Unveiling Anomalies in Terrain Elevation Products from Spaceborne Full-Waveform LiDAR over Forested Areas. Forests. 2024; 15(10):1821. https://doi.org/10.3390/f15101821
Chicago/Turabian StyleJiang, Hailan, Yi Li, Guangjian Yan, Weihua Li, Linyuan Li, Feng Yang, Anxin Ding, Donghui Xie, Xihan Mu, Jing Li, and et al. 2024. "Unveiling Anomalies in Terrain Elevation Products from Spaceborne Full-Waveform LiDAR over Forested Areas" Forests 15, no. 10: 1821. https://doi.org/10.3390/f15101821
APA StyleJiang, H., Li, Y., Yan, G., Li, W., Li, L., Yang, F., Ding, A., Xie, D., Mu, X., Li, J., Xu, K., Zhao, P., Geng, J., & Morsdorf, F. (2024). Unveiling Anomalies in Terrain Elevation Products from Spaceborne Full-Waveform LiDAR over Forested Areas. Forests, 15(10), 1821. https://doi.org/10.3390/f15101821