A Review on Human–Robot Proxemics
<p>Robot approaching a goal position while perceiving human actions and maintaining an appropriate distance with the person; (<b>a</b>): A person doing an exercise, (<b>b</b>): A person working on a laptop, and, (<b>c</b>): Two persons having a conversation.</p> "> Figure 2
<p>Taxonomy used in this paper to analyze the proxemics literature.</p> "> Figure 3
<p>Hall’s proxemic zones introduced in [<a href="#B30-electronics-11-02490" class="html-bibr">30</a>].</p> "> Figure 4
<p>Six basic types of F-formation defined by Ciolek and Kendon [<a href="#B39-electronics-11-02490" class="html-bibr">39</a>].</p> "> Figure 5
<p>An overview of the HRP study conducted in [<a href="#B49-electronics-11-02490" class="html-bibr">49</a>]. (<b>a</b>): with internal noise levels of the robot, (<b>b</b>): An anthropomorphic robot head, (<b>c</b>): A manipulator, and (<b>d</b>): A service robot.</p> "> Figure 6
<p>The experimental arrangement of the HRP study reported in [<a href="#B58-electronics-11-02490" class="html-bibr">58</a>].</p> "> Figure 7
<p>The taxonomy of cases considered in the study [<a href="#B66-electronics-11-02490" class="html-bibr">66</a>].</p> "> Figure 8
<p>The set of locations defined around a user for determining the comfortable HRP by the poxemic planner proposed in [<a href="#B67-electronics-11-02490" class="html-bibr">67</a>].</p> "> Figure 9
<p>An overview of the ANFIS proposed in [<a href="#B70-electronics-11-02490" class="html-bibr">70</a>].</p> "> Figure 10
<p>An overview of the system proposed in [<a href="#B71-electronics-11-02490" class="html-bibr">71</a>].</p> "> Figure 11
<p>Motivation behind the method proposed in [<a href="#B72-electronics-11-02490" class="html-bibr">72</a>]. (<b>a</b>): a small interpersonal distance is sufficient since body joints are not much extended and not moving fast. (<b>b</b>): large interpersonal distance is required since body joints are widely extended with a considerable speed.</p> "> Figure 12
<p>The topology of the deep learning network proposed in [<a href="#B75-electronics-11-02490" class="html-bibr">75</a>].</p> "> Figure 13
<p>The method proposed in [<a href="#B80-electronics-11-02490" class="html-bibr">80</a>] to adapt a robot’s behavior based on HRP.</p> "> Figure 14
<p>Proxemic aware passing strategy proposed in [<a href="#B83-electronics-11-02490" class="html-bibr">83</a>].</p> "> Figure 15
<p>HRP aware path planing strategy proposed in [<a href="#B85-electronics-11-02490" class="html-bibr">85</a>].</p> ">
Abstract
:1. Introduction
2. Human–Human Proxemics Studies
- Intimate Distance: used for embracing, touching or whispering
- -
- Close Phase: Less than 15 cm
- -
- Far Phase: 15 to 46 cm
- Personal Distance: used for interactions among good friends or family
- -
- Close Phase: 46 to 76 cm
- -
- Far Phase: 76 to 122 cm
- Social Distance: used for interactions among acquaintances
- -
- Close Phase: 1.2 to 2.1 m
- -
- Far Phase: 2.1 to 3.7 m
- Public Distance: used for public speaking
- -
- Close Phase: 3.7 to 7.6 m
- -
- Far Phase: 7.6 m or above
3. Human–Robot Proxemics (HRP) Studies
3.1. User Attributes and HRP
3.2. Robot Attributes and HRP
3.3. Context and HRP
3.4. HRP Studies on Emerging Directions
3.4.1. HRP in Virtual Reality (VR) Settings
3.4.2. Drones and HRP
3.5. Summary of HRP Preferences Revealed by Human–Robot Studies
4. Methods Developed for Establishing Proxemics Awareness in Service Robots
4.1. Methods of Modeling HRP for Improving User Comfortability
4.2. Methods That Adapts HRP for Enhancing Communication
4.3. Methods That Adapts a Robot’s Behavior Based on HRP
4.4. Methods for HRP Aware Path Plannings
5. Limitations of Current Work and Potential Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- ISO 8373: 2012 (en); Robots and Robotic Devices–Vocabulary. International Organization for Standardization: Geneva, Switzerland, 2012.
- Kunze, L.; Hawes, N.; Duckett, T.; Hanheide, M.; Krajník, T. Artificial intelligence for long-term robot autonomy: A survey. IEEE Robot. Autom. Lett. 2018, 3, 4023–4030. [Google Scholar] [CrossRef] [Green Version]
- Broadbent, E.; Feerst, D.A.; Lee, S.H.; Robinson, H.; Albo-Canals, J.; Ahn, H.S.; MacDonald, B.A. How could companion robots be useful in rural schools? Int. J. Soc. Robot. 2018, 10, 295–307. [Google Scholar] [CrossRef]
- Varela-Aldás, J.; Miranda-Quintana, O.; Guevara, C.; Castillo, F.; Palacios-Navarro, G. Educational Robot Using Lego Mindstorms and Mobile Device. In Proceedings of the International Conference on Computer Science, Electronics and Industrial Engineering (CSEI), Ambato, Ecuador, 28–31 October 2019; pp. 71–82. [Google Scholar]
- Ngo, T.D. morebots: System development and integration of an educational and entertainment modular robot. In Proceedings of the 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Ottawa, ON, Canada, 5–7 October 2017; pp. 74–80. [Google Scholar]
- Richardson, K.; Coeckelbergh, M.; Wakunuma, K.; Billing, E.; Ziemke, T.; Gomez, P.; Vanderborght, B.; Belpaeme, T. Robot Enhanced Therapy for Children with Autism (DREAM): A Social Model of Autism. IEEE Technol. Soc. Mag. 2018, 37, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Anwar, Y. Robots in Healthcare: A Survey. In Proceedings of the Science and Information Conference, Las Vegas, NV, USA, 2–3 May 2019; pp. 280–292. [Google Scholar]
- Aaltonen, I.; Arvola, A.; Heikkilä, P.; Lammi, H. Hello Pepper, May I Tickle You?: Children’s and Adults’ Responses to an Entertainment Robot at a Shopping Mall. In Proceedings of the Companion of the 2017 ACM/IEEE International Conference Human-Robot Interaction, Vienna, Austria, 6–9 March 2017; pp. 53–54. [Google Scholar]
- Morris, K.J.; Samonin, V.; Anderson, J.; Lau, M.C.; Baltes, J. Robot magic: A robust interactive humanoid entertainment robot. In Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Montreal, QC, Canada, 25–28 June 2018; pp. 245–256. [Google Scholar]
- Muthugala, M.V.J.; Samarakoon, S.B.P.; Elara, M.R. Tradeoff Between Area Coverage and Energy Usage of a Self-Reconfigurable Floor Cleaning Robot Based on User Preference. IEEE Access 2020, 8, 76267–76275. [Google Scholar] [CrossRef]
- Samarakoon, S.B.P.; Muthugala, M.V.J.; Elara, M.R.; Kumaran, S. Toward Pleomorphic Reconfigurable Robots for Optimum Coverage. Complexity 2021, 2021, 3705365. [Google Scholar] [CrossRef]
- Muthugala, M.V.J.; Vengadesh, A.; Wu, X.; Elara, M.R.; Iwase, M.; Sun, L.; Hao, J. Expressing attention requirement of a floor cleaning robot through interactive lights. Autom. Constr. 2020, 110, 103015. [Google Scholar] [CrossRef]
- Azenkot, S.; Feng, C.; Cakmak, M. Enabling building service robots to guide blind people a participatory design approach. In Proceedings of the 2016 11th ACM/IEEE Int. Conf. Human-Robot Interaction (HRI), Christchurch, New Zealand, 7–10 March 2016; pp. 3–10. [Google Scholar]
- Al-Wazzan, A.; Al-Farhan, R.; Al-Ali, F.; El-Abd, M. Tour-guide robot. In Proceedings of the 2016 International Conference on Industrial Informatics and Computer Systems (CIICS), Sharjah, United Arab Emirates, 13–15 March 2016; pp. 1–5. [Google Scholar]
- Wang, S.; Christensen, H.I. Tritonbot: First lessons learned from deployment of a long-term autonomy tour guide robot. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018; pp. 158–165. [Google Scholar]
- Belanche, D.; Casaló, L.V.; Flavián, C.; Schepers, J. Service robot implementation: A theoretical framework and research agenda. Serv. Ind. J. 2020, 40, 203–225. [Google Scholar] [CrossRef] [Green Version]
- de Graaf, M.M.; Allouch, S.B.; van Dijk, J.A. Long-term acceptance of social robots in domestic environments: Insights from a user’s perspective. In Proceedings of the 2016 AAAI Spring Symposium Series, Stanford, CA, USA, 21–23 March 2016. [Google Scholar]
- Yuan, W.; Li, Z. Development of a human-friendly robot for socially aware human–robot interaction. In Proceedings of the 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM), Tai’an, China, 27–31 August 2017; pp. 76–81. [Google Scholar]
- Peshkin, M.; Colgate, J.E. Cobots. Ind. Robot. Int. J. 1999, 26, 335–341. [Google Scholar] [CrossRef]
- Yao, J.; Lin, C.; Xie, X.; Wang, A.J.; Hung, C.C. Path planning for virtual human motion using improved A* star algorithm. In Proceedings of the 2010 Seventh International Conference on Information Technology: New Generations, Las Vegas, NV, USA, 12–14 April 2010; pp. 1154–1158. [Google Scholar]
- Song, K.T.; Chiu, Y.H.; Kang, L.R.; Song, S.H.; Yang, C.A.; Lu, P.C.; Ou, S.Q. Navigation control design of a mobile robot by integrating obstacle avoidance and LiDAR SLAM. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 1833–1838. [Google Scholar]
- Choi, J.H.; Choi, B.J. Indoor Moving and Implementation of a Mobile Robot Using Hall Sensor and Dijkstra Algorithm. IEMEK J. Embed. Syst. Appl. 2019, 14, 151–156. [Google Scholar]
- Alagić, E.; Velagić, J.; Osmanović, A. Design of Mobile Robot Motion Framework based on Modified Vector Field Histogram. In Proceedings of the 2019 International Symposium ELMAR, Zadar, Croatia, 23–25 September 2019; pp. 135–138. [Google Scholar]
- He, W.; Li, Z.; Chen, C.P. A survey of human-centered intelligent robots: Issues and challenges. IEEE/CAA J. Autom. Sin. 2017, 4, 602–609. [Google Scholar] [CrossRef]
- Forer, S.; Banisetty, S.B.; Yliniemi, L.; Nicolescu, M.; Feil-Seifer, D. Socially-aware navigation using non-linear multi-objective optimization. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1–9. [Google Scholar]
- Truong, X.T.; Ngo, T.D. Toward socially aware robot navigation in dynamic and crowded environments: A proactive social motion model. IEEE Trans. Autom. Sci. Eng. 2017, 14, 1743–1760. [Google Scholar] [CrossRef]
- Samarakoon, S.M.B.P.; Muthugala, M.A.V.J.; Jayasekara, A.G.B.P. Identifying approaching behavior of a person during a conversation: A human study for improving human–robot interaction. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 1976–1982. [Google Scholar]
- Gómez, J.V.; Mavridis, N.; Garrido, S. Social path planning: Generic human–robot interaction framework for robotic navigation tasks. In Proceedings of the 2nd International Workshop on Cognitive Robotics Systems: Replicating Human Actions and Activities, Tokyo, Japan, 3 November 2013. [Google Scholar]
- Karreman, D.; Utama, L.; Joosse, M.; Lohse, M.; van Dijk, B.; Evers, V. Robot etiquette: How to approach a pair of people? In Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction, Bielefeld, Germany, 3–6 March 2014; pp. 196–197. [Google Scholar]
- Hall, E.T. The Hidden Dimension; Doubleday & Company Inc.: Garden City, NY, USA, 1966. [Google Scholar]
- Kim, Y.; Mutlu, B. How social distance shapes human–robot interaction. Int. J. Hum.-Comput. Stud. 2014, 72, 783–795. [Google Scholar] [CrossRef]
- van Houwelingen-Snippe, J.; Vroon, J.; Englebienne, G.; Haselager, P. Blame my telepresence robot joint effect of proxemics and attribution on interpersonal attraction. In Proceedings of the 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, 28 August–1 September 2017; pp. 162–168. [Google Scholar]
- Rossi, S.; Ercolano, G.; Raggioli, L.; Savino, E.; Ruocco, M. The disappearing robot: An analysis of disengagement and distraction during non-interactive tasks. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018; pp. 522–527. [Google Scholar]
- Mead, R.; Matarić, M.J. Robots have needs too: How and why people adapt their proxemic behavior to improve robot social signal understanding. J. Hum.-Robot Interact. 2016, 5, 48–68. [Google Scholar] [CrossRef] [Green Version]
- Mead, R.; Matarić, M.J. Proxemics and performance: Subjective human evaluations of autonomous sociable robot distance and social signal understanding. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 5984–5991. [Google Scholar]
- Hediger, H. Studies of the psychology and behavior of captive animals in zoos and circuses. Science 1955, 124, 592. [Google Scholar]
- Argyle, M.; Dean, J. Eye-contact, distance and affiliation. Sociometry 1965, 289–304. [Google Scholar] [CrossRef]
- Aiello, J.R. A further look at equilibrium theory: Visual interaction as a function of interpersonal distance. Environ. Psychol. Nonverbal Behav. 1977, 1, 122–140. [Google Scholar] [CrossRef]
- Ciolek, T.M.; Kendon, A. Environment and the spatial arrangement of conversational encounters. Sociol. Inq. 1980, 50, 237–271. [Google Scholar] [CrossRef]
- Walters, M.L.; Dautenhahn, K.; Koay, K.L.; Kaouri, C.; Boekhorst, R.T.; Nehaniv, C.; Werry, I.; Lee, D. Close encounters: Spatial distances between people and a robot of mechanistic appearance. In Proceedings of the 5th IEEE-RAS International Conference on Humanoid Robots, Tsukuba, Japan, 5 December 2005; pp. 450–455. [Google Scholar]
- Walters, M.L.; Dautenhahn, K.; Te Boekhorst, R.; Koay, K.L.; Kaouri, C.; Woods, S.; Nehaniv, C.; Lee, D.; Werry, I. The influence of subjects’ personality traits on personal spatial zones in a human–robot interaction experiment. In Proceedings of the ROMAN 2005—IEEE International Workshop on Robot and Human Interactive Communication, Nashville, TN, USA, 13–15 August 2005; pp. 347–352. [Google Scholar]
- Rossi, S.; Staffa, M.; Bove, L.; Capasso, R.; Ercolano, G. User’s personality and activity influence on hri comfortable distances. In Proceedings of the International Conference on Social Robotics, Tsukuba, Japan, 22–24 November 2017; pp. 167–177. [Google Scholar]
- Obaid, M.; Sandoval, E.B.; Złotowski, J.; Moltchanova, E.; Basedow, C.A.; Bartneck, C. Stop! That is close enough. How body postures influence human–robot proximity. In Proceedings of the 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; pp. 354–361. [Google Scholar]
- Eresha, G.; Häring, M.; Endrass, B.; André, E.; Obaid, M. Investigating the influence of culture on proxemic behaviors for humanoid robots. In Proceedings of the 2013 IEEE Ro-Man, Gyeongju, Korea, 26–29 August 2013; pp. 430–435. [Google Scholar]
- Takayama, L.; Pantofaru, C. Influences on proxemic behaviors in human–robot interaction. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 5495–5502. [Google Scholar]
- Walters, M.L.; Oskoei, M.A.; Syrdal, D.S.; Dautenhahn, K. A long-term human–robot proxemic study. In Proceedings of the 2011 RO-MAN, Atlanta, GA, USA, 31 July–3 August 2011; pp. 137–142. [Google Scholar]
- Mumm, J.; Mutlu, B. Human–robot proxemics: Physical and psychological distancing in human–robot interaction. In Proceedings of the 6th International Conference on Human-Robot Interaction, Lausanne, Switzerland, 6–9 March 2011; pp. 331–338. [Google Scholar]
- Walters, M.L.; Syrdal, D.S.; Koay, K.L.; Dautenhahn, K.; Te Boekhorst, R. Human approach distances to a mechanical-looking robot with different robot voice styles. In Proceedings of the RO-MAN 2008—The 17th IEEE International Symposium on Robot and Human Interactive Communication, Munich, Germany, 1–3 August 2008; pp. 707–712. [Google Scholar]
- Samarakoon, S.M.B.P.; Muthugala, M.A.V.J.; Jayasekara, A.G.B.P.; Elara, M.R. An exploratory study on proxemics preferences of humans in accordance with attributes of service robots. In Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–7. [Google Scholar]
- Trovato, G.; Paredes, R.; Balvin, J.; Cuellar, F.; Thomsen, N.B.; Bech, S.; Tan, Z.H. The sound or silence: Investigating the influence of robot noise on proxemics. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018; pp. 713–718. [Google Scholar]
- Syrdal, D.S.; Dautenhahn, K.; Walters, M.L.; Koay, K.L. Sharing Spaces with Robots in a Home Scenario-Anthropomorphic Attributions and their Effect on Proxemic Expectations and Evaluations in a Live HRI Trial. In Proceedings of the AAAI Fall Symposium: AI in Eldercare: New Solutions to Old Problems, Arlington, VA, USA, 7–9 November 2008; pp. 116–123. [Google Scholar]
- Butler, J.T.; Agah, A. Psychological effects of behavior patterns of a mobile personal robot. Auton. Robot. 2001, 10, 185–202. [Google Scholar] [CrossRef]
- Zhang, J.; Janeh, O.; Katzakis, N.; Krupke, D.; Steinicke, F. Evaluation of Proxemics in Dynamic Interaction with a Mixed Reality Avatar Robot. In Proceedings of the ICAT-EGVE, Tokyo, Japan, 11–13 September 2019; pp. 37–44. [Google Scholar]
- Dubois, M.; Claret, J.A.; Basañez, L.; Venture, G. Influence of emotional motions in human–robot interactions. In Proceedings of the International Symposium on Experimental Robotics, Nagasaki, Japan, 3–8 October 2016; pp. 799–808. [Google Scholar]
- Walters, M.L.; Koay, K.L.; Woods, S.N.; Syrdal, D.S.; Dautenhahn, K. Robot to Human Approaches: Preliminary Results on Comfortable Distances and Preferences. In Proceedings of the AAAI Spring Symposium: Multidisciplinary Collaboration for Socially Assistive Robotics, Standford, CA, USA, 26–28 March 2007; p. 103. [Google Scholar]
- Koay, K.L.; Syrdal, D.S.; Ashgari-Oskoei, M.; Walters, M.L.; Dautenhahn, K. Social roles and baseline proxemic preferences for a domestic service robot. Int. J. Soc. Robot. 2014, 6, 469–488. [Google Scholar] [CrossRef] [Green Version]
- Walters, M.L.; Dautenhahn, K.; Woods, S.N.; Koay, K.L.; Te Boekhorst, R.; Lee, D. Exploratory studies on social spaces between humans and a mechanical-looking robot. Connect. Sci. 2006, 18, 429–439. [Google Scholar] [CrossRef]
- Ruijten, P.A.; Cuijpers, R.H. Stopping distance for a robot approaching two conversating persons. In Proceedings of the 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, 28 August–1 September 2017; pp. 224–229. [Google Scholar]
- Ruijten, P.A.; Cuijpers, R.H. Do Not Let the Robot Get too Close: Investigating the Shape and Size of Shared Interaction Space for Two People in a Conversation. Information 2020, 11, 147. [Google Scholar] [CrossRef] [Green Version]
- Neggers, M.M.; Cuijpers, R.H.; Ruijten, P.A. Comfortable passing distances for robots. In Proceedings of the International Conference on Social Robotics, Qingdao, China, 28–30 November 2018; pp. 431–440. [Google Scholar]
- Li, R.; van Almkerk, M.; van Waveren, S.; Carter, E.; Leite, I. Comparing human–robot proxemics between virtual reality and the real world. In Proceedings of the 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Daegu, Korea, 11–14 March 2019; pp. 431–439. [Google Scholar]
- Petrak, B.; Weitz, K.; Aslan, I.; Andre, E. Let me show you your new home: Studying the effect of proxemic-awareness of robots on users’ first impressions. In Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–7. [Google Scholar]
- Wojciechowska, A.; Frey, J.; Sass, S.; Shafir, R.; Cauchard, J.R. Collocated human-drone interaction: Methodology and approach strategy. In Proceedings of the 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Daegu, Korea, 11–14 March 2019; pp. 172–181. [Google Scholar]
- Jensen, W.; Hansen, S.; Knoche, H. Knowing you, seeing me: Investigating user preferences in Drone-Human acknowledgement. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–12. [Google Scholar]
- Duncan, B.A.; Murphy, R.R. Comfortable approach distance with small unmanned aerial vehicles. In Proceedings of the 2013 IEEE RO-MAN, Gyeongju, Korea, 26–29 August 2013; pp. 786–792. [Google Scholar]
- Yeh, A.; Ratsamee, P.; Kiyokawa, K.; Uranishi, Y.; Mashita, T.; Takemura, H.; Fjeld, M.; Obaid, M. Exploring proxemics for human-drone interaction. In Proceedings of the 5th International Conference on Human Agent Interaction, Bielefeld, Germany, 17–20 October 2017; pp. 81–88. [Google Scholar]
- Koay, K.L.; Syrdal, D.; Bormann, R.; Saunders, J.; Walters, M.L.; Dautenhahn, K. Initial design, implementation and technical evaluation of a context-aware proxemics planner for a social robot. In Proceedings of the International Conference on Social Robotics, Tsukuba, Japan, 22–24 November 2017; pp. 12–22. [Google Scholar]
- Walters, M.L.; Dautenhahn, K.; Te Boekhorst, R.; Koay, K.L.; Syrdal, D.S.; Nehaniv, C.L. An empirical framework for human–robot proxemics. In New Frontiers in Human-Robot Interaction; John Benjamins Publishing: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Jang, J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Balasuriya, J.C.; Watanabe, K.; Pallegedara, A. ANFIS based active personal space for autonomous robots in ubiquitous environments. In Proceedings of the 2007 International Conference on Industrial and Information Systems, Peradeniya, Sri Lanka, 9–11 August 2007; pp. 523–528. [Google Scholar]
- Vitiello, A.; Acampora, G.; Staffa, M.; Siciliano, B.; Rossi, S. A neuro-fuzzy-bayesian approach for the adaptive control of robot proxemics behavior. In Proceedings of the 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 9–12 July 2017; pp. 1–6. [Google Scholar]
- Bhagya, S.; Samarakoon, P.; Sirithunge, H.C.; Viraj, M.; Muthugala, J.; Buddhika, A.; Jayasekara, P. Proxemics and Approach Evaluation by Service Robot Based on User Behavior in Domestic Environment. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 8192–8199. [Google Scholar]
- Kukolj, D. Design of adaptive Takagi–Sugeno–Kang fuzzy models. Appl. Soft Comput. 2002, 2, 89–103. [Google Scholar] [CrossRef]
- Kosiński, T.; Obaid, M.; Woźniak, P.W.; Fjeld, M.; Kucharski, J. A fuzzy data-based model for Human-Robot Proxemics. In Proceedings of the 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; pp. 335–340. [Google Scholar]
- Gao, Y.; Wallkötter, S.; Obaid, M.; Castellano, G. Investigating deep learning approaches for human–robot proxemics. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018; pp. 1093–1098. [Google Scholar]
- Mitsunaga, N.; Smith, C.; Kanda, T.; Ishiguro, H.; Hagita, N. Adapting robot behavior for human–robot interaction. IEEE Trans. Robot. 2008, 24, 911–916. [Google Scholar] [CrossRef] [Green Version]
- Samarakoon, S.M.B.P.; Muthugala, M.A.V.J.; Jayasekara, A.G.B.P. Replicating natural approaching behavior of humans for improving robot’s approach toward two persons during a conversation. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018; pp. 552–558. [Google Scholar]
- Mead, R.; Matarić, M.J. Perceptual models of human–robot proxemics. In Proceedings of the Experimental Robotics, Essaouira, Morocco, 15–18 June 2016; pp. 261–276. [Google Scholar]
- Mead, R.; Matarić, M.J. Autonomous human–robot proxemics: Socially aware navigation based on interaction potential. Auton. Robot. 2017, 41, 1189–1201. [Google Scholar] [CrossRef]
- Henkel, Z.; Bethel, C.L.; Murphy, R.R.; Srinivasan, V. Evaluation of proxemic scaling functions for social robotics. IEEE Trans. Hum.-Mach. Syst. 2014, 44, 374–385. [Google Scholar] [CrossRef]
- Mead, R.; Atrash, A.; Matarić, M.J. Automated proxemic feature extraction and behavior recognition: Applications in human–robot interaction. Int. J. Soc. Robot. 2013, 5, 367–378. [Google Scholar] [CrossRef]
- Eddy, S.R. What is a hidden Markov model? Nat. Biotechnol. 2004, 22, 1315–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacchierotti, E.; Christensen, H.I.; Jensfelt, P. Evaluation of passing distance for social robots. In Proceedings of the Roman 2006-the 15th IEEE International Symposium on Robot and Human Interactive Communication, Hatfield, UK, 6–8 September 2006; pp. 315–320. [Google Scholar]
- Talebpour, Z.; Viswanathan, D.; Ventura, R.; Englebienne, G.; Martinoli, A. Incorporating perception uncertainty in human-aware navigation: A comparative study. In Proceedings of the 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; pp. 570–577. [Google Scholar]
- Vega-Magro, A.; Manso, L.; Bustos, P.; Núñez, P.; Macharet, D.G. Socially acceptable robot navigation over groups of people. In Proceedings of the 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, 28 August–1 September 2017; pp. 1182–1187. [Google Scholar]
- Repiso, E.; Garrell, A.; Sanfeliu, A. Robot approaching and engaging people in a human–robot companion framework. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 8200–8205. [Google Scholar]
Paper | User Atrributes | Robot Attributes | Context |
---|---|---|---|
[40] | *Children: 1.75 m *Adults: <=0.5 m No experience | Mechanistic appearance (PeopleBot) | Robot toward human Human toward robot |
[41] | Adults No experience 0.45 m–3.6 m | Mechanistic appearance (PeopleBot) | Robot toward human Human toward robot |
[42] | Adults No experience *Extraversion: High—0.90 m, Low—0.85 m *Conscientiousness: High—0.85 m, Low—0.95 m *Agreebleness: High—0.87 m *Neuroticism: High—0.95 m, Low—0.67 m *Openness: High—0.90 m, Low—0.70 m | Pioneer 3DX | Robot approach toward human *User body posture: Standing—0.95 m Walking—0.96 m Sitting—0.78 m Laying—0.82 m |
[43] | Adults No experience New Zealand | Nao | *Human toward a sitting robot: Male—0.40 m, Female—0.30 m *Robot toward a sitting human: Male—0.30 m, Female—0.40 m *Human toward a standing robot: Male—0.55 m, Female—0.40 m *Robot toward a standing human: Male—0.40 m, female—0.45 m |
[44] | Adults No experience *German culture: Robot–robot—0.42 m, Human–robot—0.86 m *Arabic culture: Robot–robot—0.4 m, Human–robot—0.66 m | Nao | Placing robots for conversation |
[45] | Adults *Experience: No—0.34 m, 1 year—0.25 m *Pet owner: Yes—0.39 m, No—0.52 m | PR2 | Robot toward human *Robot’s gaze toward human’s head: Female—0.30 m, Male—0.25 m *Robot’s gaze toward human’s head: Female—0.25 m, Male—0.30 m |
[46] | Adults *Experience in weeks: 1—0.50 m, 2—0.43 m, 3—0.46 m, 4—0.43 m, 5—0.45 m, 6—0.51 m | Mechanistic appearance (PeopleBot) | Robot toward human Kitchen and living room |
[47] | Adults *Pet owners prefer higher HRP | Wakamaru | Human toward robot *Mutual gaze: Female—1.0 m, Male—1.1 m *Avatar gaze: Female—1.0 m, Male—1.0 m |
[48] | Adults No experience and experienced | Mechanistic appearance (PeopleBot) *Natural male voice: 0.52 m *Natural female voice: 0.60 m *Synthetic voice: 0.80 m *No voice: 0.42 m | Robot toward human Human toward robot |
[49] | Adults No experience South Asian | *Facial emotion: Happy—0.60 m, Sad—0.45 m, Angry—1.22 m, Surprise—0.88 m, Disgust—1.22 m, Fear—0.88 m *Vocal emotions: Happy—0.85 m, Sad—0.67 m, Angry—1.27 m, Fear—0.82 m *Noise: 00 dB—0.72 m, 53 dB—0.76 m, 57 dB—0.92 m, 62 dB—1.07 m *Physical appearance: MIRob—0.68 m, Robot head—0.67 m, K3 manipulator—0.97 m, Fuzzbot—0.63 m | Human approach toward robot for a conversation |
[50] | Adults No experience | *Noise: Regular sound (65 dB)—1.10 m Silent—0.92 m Mask sound—1.03 m | Human passing a robot in a corridor |
[51] | Adults No experience | *Appearance Humanoid—0.62 m, Mechanoid—0.50 m *Mental model Human-like—0.57 m, Non-human—0.52 m | Robot toward human Robot passing human |
[52] | Adults No experience | *Robot upto human height: 0.55 m *Robot upto knee height: 0.25 m | Robot approaching toward human Robot passing human |
[53] | Adults No experience | Mixed-reality avatar robot build in Pioneer 3-DX Human following a robot: *Speed 0.8 m/s: Avatar visible—1.30 m, Avatar invisible—1.25 m *Speed 1.0 m/s: Avatar visible—1.42 m, Avatar invisible—1.38 m *Speed 1.2 m/s: Avatar visible—1.50 m, Avatar invisible—1.55 m Human avoiding a robot: *Speed 0.8 m/s: Avatar visible—2.25 m, Avatar invisible—2.35 m *Speed 1.0 m/s: Avatar visible—2.18 m, Avatar invisible—2.8 m *Speed 1.2 m/s: Avatar visible—2.00 m, Avatar invisible—2.04 m | |
[54] | Adults No experience Japanese | Pepper *Body and facial emotions: Happy—1.09 m, Neutral—1.18 m, Sad—1.37 m | Human toward robot |
[55] | Adults No experience | Mechanistic appearance (PeopleBot) | Robot toward human *Seated on a chair in an open space: *Standing on an open space: *Seated at a table in an open space: *Standing back against a wall For all, front left, front right—most comfortable, Right—least preferred |
[56] | Adults *Short term: Prefer Side approaching *Long term: No preference in direction | Care-O-bot | Robot toward human *Delivering a drink: 0.5 m, front *Delivering a hat: 0.5 m, side |
[57] | Adults No experience | Mechanistic appearance (PeopleBot) | Robot hand over an object when human sitting on a chair *Right: highest preferred *Front: least preferred |
[58] | Adults No experience | Nao | Robot approach toward two persons having a conversation *Directions: −70°: 0.92 m, −35°: 0.98 m, 35°: 1.05 m, 70°: 1.11 m |
[60] | Adults No experience | Pepper | *Human passing a robot in a corridor: 1.1 m |
[61] | Adults No experience | Pepper *Virtual Reality (VR) and real robot: VR—0.46 m, Real—0.53 m *VR: Sound—0.40 m, No sound—0.52 m | Robot approach toward human |
[62] | Adults No experience | VR | Collaboratively explore a room by a robot and a human |
[63] | Adults No experience | Drone Speed: 0.5 m/s Trajectory: straight | Drone toward human Front direction most comfortable *1.2 m personal zone is preferred |
[64] | Adults No experience | Drone Height: 1.5 m, Speed: 0.7 m/s | *Drone toward human: 1.8 m *Human toward drone: 1.6 m |
[65] | Adults Experienced | AR100R drone *Height: Short—0.62 m, Tall—0.63 m | Drone approach toward human |
[66] | Adults *Gender: Female—1.5 m, Male—1.1 m *Pet ownership: Yes—1.13 m, No—1.39 m | Drone *Social shape: Greeting voice—1.06 m No greeting voice—1.14 m *Non social shape: Greeting voice—1.33 m No greeting—1.38 m | Drone approach toward human *Approaching height 1.2 m Lateral distance: 0 m—-1.14 m, 0.3 m–1.02 m, 0.6 m–0.95 m *Approaching height 1.8 m Lateral distance: 0 m–1.35 m, 0.3 m–1.38 m, 0.6 m–1.27 m |
Current Status | Potential Future Work | |
---|---|---|
User Attributes |
|
|
Robot Attributes |
|
|
Context |
|
|
Current Status | Potential Future Works | |
---|---|---|
Scope |
|
|
Interaction |
|
|
Adaptation |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samarakoon, S.M.B.P.; Muthugala, M.A.V.J.; Jayasekara, A.G.B.P. A Review on Human–Robot Proxemics. Electronics 2022, 11, 2490. https://doi.org/10.3390/electronics11162490
Samarakoon SMBP, Muthugala MAVJ, Jayasekara AGBP. A Review on Human–Robot Proxemics. Electronics. 2022; 11(16):2490. https://doi.org/10.3390/electronics11162490
Chicago/Turabian StyleSamarakoon, S. M. Bhagya P., M. A. Viraj J. Muthugala, and A. G. Buddhika P. Jayasekara. 2022. "A Review on Human–Robot Proxemics" Electronics 11, no. 16: 2490. https://doi.org/10.3390/electronics11162490
APA StyleSamarakoon, S. M. B. P., Muthugala, M. A. V. J., & Jayasekara, A. G. B. P. (2022). A Review on Human–Robot Proxemics. Electronics, 11(16), 2490. https://doi.org/10.3390/electronics11162490