Trends of Ocean Underwater Acoustic Levels Recorded Before, During, and After the 2020 COVID Crisis
<p>Locations of all the stations whose data we analyzed in the study. Red stars: ONC, Blue triangle: OBSEA, Green dots: JAMSTEC.</p> "> Figure 2
<p>Available data recordings from 2016 to 2021 for the selected stations. The same color code indicates nodes belonging to the same network: OBSEA in blue, ONC in red, and JAMSTEC in green.</p> "> Figure 3
<p>Shipping noise band daily median for (<b>a</b>) OBSEA (from 2017, 2019, and 2020), (<b>b</b>) Clayoquot Slope (from 2018 to 2020), and (<b>c</b>) Kushiro 1 (from 2016 to 2021). Blue dots represent the daily median values, with colors transitioning from light to dark blue by year. The linear model fitted to each selected period by year is the red solid line and the red dashed lines are the 95% confidence intervals.</p> "> Figure 3 Cont.
<p>Shipping noise band daily median for (<b>a</b>) OBSEA (from 2017, 2019, and 2020), (<b>b</b>) Clayoquot Slope (from 2018 to 2020), and (<b>c</b>) Kushiro 1 (from 2016 to 2021). Blue dots represent the daily median values, with colors transitioning from light to dark blue by year. The linear model fitted to each selected period by year is the red solid line and the red dashed lines are the 95% confidence intervals.</p> "> Figure 4
<p>Slope distribution (one month lag) of shipping noise band levels daily median per year during the selected period for (<b>a</b>) OBSEA, (<b>b</b>) Clayoquot Slope, and (<b>c</b>) Kushiro 1. Individual observations on top of boxes were added by shifting all dots by a random value to avoid overlaps. The median comparison <span class="html-italic">p</span>-value of the pairwise Wilcoxon test is displayed on top of the box plots and the <span class="html-italic">p</span>-value of the Kruskal–Wallis test, comparing multiple years.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Analysis
2.2.1. Noise Levels
2.2.2. Animal Presence
ONC
JAMSTEC
3. Results
3.1. Noise Levels
3.2. Animal Presence
3.2.1. ONC
3.2.2. JAMSTEC
4. Discussion
5. Conclusions
- We found a yearly variability in SNB levels not significantly influenced by marine traffic, thus dominated by natural and biological patterns.
- In some locations, a drop in SNB levels can be expected during the first few months of the year as part of the usual variation in the sound levels, which recurs in a similar pattern each year.
- The SNB level (Figure 3, Supplementary Figure S1) showed an annual periodic trend with a seasonal near half-year cycle of decreasing followed by increasing levels for most locations (OBSEA, Barkley Canyon, Cascadia Basin, Clayoquot Slope, Endeavour, Vancouver Island, and all the Kushiro observatories).
- Since we analyzed data from hydrophones located far away from shipping lanes, our results showed that the halt in transportation due to COVID was not significant in terms of acoustic exposure at these locations.
- Three cetacean species were identified in the ONC observatories: humpback whales, orcas, and sperm whales. Our results drawn from ONC and the short tonal detector 10–45 Hz in JAMSTEC cannot provide a conclusive evaluation of the relative abundance of acoustically active species during the COVID period.
- The long-term methodology applied in this study has the potential to estimate trends in cetacean vocalization rate within the area.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trisos, C.H.; Merow, C.; Pigot, A.L. The projected timing of abrupt ecological disruption from climate change. Nature 2020, 580, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Mehvar, S.; Filatova, T.; Dastgheib, A.; De Ruyter van Steveninck, E.; Ranasinghe, R. Quantifying economic value of coastal ecosystem services: A review. J. Mar. Sci. Eng. 2018, 6, 5. [Google Scholar] [CrossRef]
- Duarte, C.M.; Chapuis, L.; Collin, S.P.; Costa, D.P.; Devassy, R.P.; Eguiluz, V.M.; Erbe, C.; Gordon, T.A.C.; Halpern, B.S.; Harding, H.R.; et al. The soundscape of the anthropocene ocean. Science 2021, 371, eaba4658. [Google Scholar] [CrossRef] [PubMed]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A global map of human impact on marine ecosystems. Science 2018, 319, 948–952. [Google Scholar] [CrossRef]
- Wilson, K.A.; Auerbach, N.A.; Sam, K.; Magini, A.G.; Moss, A.S.L.; Langhans, S.D.; Budiharta, S.; Terzano, D.; Meijaard, E. Conservation research is not happening where it is most needed. PLoS Biol. 2016, 14, e1002413. [Google Scholar] [CrossRef]
- Jones, N. Ocean uproar: Saving marine life from a barrage of noise. Nature 2019, 568, 158–162. [Google Scholar] [CrossRef]
- Andrew, R.K.; Howe, B.M.; Mercer, J.A.; Dzieciuch, M.A. Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the california coast. Acoust. Res. Lett. Online 2002, 3, 65–70. [Google Scholar] [CrossRef]
- National Research Council; Division on Earth, Life Studies, Ocean Studies Board; Committee on Potential Impacts of Ambient Noise in the Ocean on Marine Mammals. Ocean Noise and Marine Mammals; National Academies Press: Washington, DC, USA, 2003. [Google Scholar] [CrossRef]
- McKenna, M.F.; Shannon, G.; Fristrup, K. Characterizing anthropogenic noise to improve understanding and management of impacts to wildlife. Endanger. Species Res. 2016, 31, 279–291. [Google Scholar] [CrossRef]
- Miksis-Olds, J.L.; Nichols, S.M. Is low frequency ocean sound increasing globally? J. Acoust. Soc. Am. 2016, 139, 501–511. [Google Scholar] [CrossRef]
- Popper, A.N.; Hastings, M. The effects of anthropogenic sources of sound on fishes. J. Fish Biol. 2009, 75, 455–489. [Google Scholar] [CrossRef]
- Weilgart, L.S. The impacts of anthropogenic ocean noise on cetaceans and implications for management. Can. J. Zool. 2007, 85, 1091–1116. [Google Scholar] [CrossRef]
- Fournet, M.E.; Matthews, L.P.; Gabriele, C.M.; Haver, S.; Mellinger, D.K.; Klinck, H. Humpback whales Megaptera novaeangliae alter calling behavior in response to natural sounds and vessel noise. Mar. Ecol. Prog. Ser. 2018, 607, 251–268. [Google Scholar] [CrossRef]
- McKenna, M.F.; Ross, D.; Wiggins, S.M.; Hildebrand, J.A. Underwater radiated noise from modern commercial ships. J. Acoust. Soc. Am. 2012, 131, 92–103. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.F.; Gabriele, C.; Kipple, B. Effects of marine vessel management on the underwater acoustic environment of glacier bay national park. Ocean Coast. Manag. 2017, 139, 102–112. [Google Scholar] [CrossRef]
- Haver, S.M.; Klinck, H.; Nieukirk, S.L.; Matsumoto, H.; Dziak, R.P.; Miksis-Olds, J.L. The not-so-silent world: Measuring arctic, equatorial, and Antarctic soundscapes in the Atlantic ocean. Deep Sea Res. I Oceanogr. Res. Pap. 2017, 122, 95–104. [Google Scholar] [CrossRef]
- Rutz, C.; Loretto, M.C.; Bates, A.E.; Davidson, S.C.; Duarte, C.M.; Jetz, W.; Johnson, M.; Kato, A.; Kays, R.; Mueller, T.; et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 2020, 4, 1156–1159. [Google Scholar] [CrossRef]
- March, D.; Metcalfe, K.; Tintoré, J.; Godley, B.J. Tracking the global reduction of marine traffic during the covid-19 pandemic. Nat. Commun. 2021, 12, 2415. [Google Scholar] [CrossRef]
- Millefiori, L.M.; Braca, P.; Zissis, D.; Spiliopoulos, G.; Marano, S.; Willett, P.K.; Carniel, S. COVID-19 impact on global maritime mobility. Sci. Rep. 2021, 11, 18039. [Google Scholar] [CrossRef]
- Breeze, H.; Li, S.; Marotte, E.C.; Theriault, J.A.; Wingfield, J.; Xu, J. Changes in underwater noise and vessel traffic in the approaches to Halifax Harbor, Nova Scotia, Canada. Front. Mar. Sci. 2021, 8, 674788. [Google Scholar] [CrossRef]
- Depellegrin, D.; Bastianini, M.; Fadini, A.; Menegon, S. The effects of COVID-19 induced lockdown measures on maritime settings of a coastal region. Sci. Total Environ. 2020, 740, 140123. [Google Scholar] [CrossRef]
- Gabriele, C.M.; Ponirakis, D.W.; Klinck, H. Underwater sound levels in Glacier Bay during reduced vessel traffic due to the COVID-19 pandemic. Front. Mar. Sci 2021, 8, 674787. [Google Scholar] [CrossRef]
- Basan, F.; Fischer, J.G.; Kühnel, D. Soundscapes in the German Baltic Sea before and during the COVID-19 pandemic. Front. Mar. Sci. 2021, 8, 689860. [Google Scholar] [CrossRef]
- Derryberry, E.P.; Phillips, J.N.; Derryberry, G.E.; Blum, M.J.; Luther, D. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 2020, 370, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Pine, M.K.; Wilson, L.; Jeffs, A.G.; McWhinnie, L.; Juanes, F.; Scuderi, A.; Radford, C.A. A Gulf in lockdown: How an enforced ban on recreational vessels increased dolphin and fish communication ranges. Glob. Change Biol. 2021, 27, 4839–4848. [Google Scholar] [CrossRef]
- Ryan, J.P.; Joseph, J.E.; Margolina, T.; Hatch, L.T.; Azzara, A.; Reyes, A.; Southall, B.L.; DeVogelaere, A.; Reeves, L.E.P.; Zhang, Y.; et al. Reduction of low-frequency vessel noise in Monterey Bay National Marine Sanctuary during the COVID-19 pandemic. Front. Mar. Sci. 2021, 8, 656566. [Google Scholar] [CrossRef]
- Thomson, D.J.; Barclay, D.R. Real-time observations of the impact of covid-19 on underwater noise. J. Acoust. Soc. Am. 2020, 147, 3390–3396. [Google Scholar] [CrossRef]
- Dunn, C.; Theriault, J.; Hickmott, L.; Claridge, D. Slower ship speed in the Bahamas due to COVID-19 produces a dramatic reduction in ocean sound levels. Front. Mar. Sci. 2021, 8, 673565. [Google Scholar] [CrossRef]
- Bertucci, F.; Lecchini, D.; Greeven, C.; Brooker, R.M.; Minier, L.; Cordonnier, S.; René-Trouillefou, M.; Parmentier, E. Changes to an urban marina soundscape associated with COVID-19 lockdown in Guadeloupe. Environ. Pollut. 2021, 289, 117898. [Google Scholar] [CrossRef]
- Gagne, E.; Perez-Ortega, B.; Hendry, A.P.; Melo-Santos, G.; Walmsley, S.F.; Rege-Colt, M.; Austin, M.; May-Collado, L.J. Dolphin communication during widespread systematic noise reduction-a natural experiment amid COVID-19 lockdowns. Front. Remote Sens. 2022, 3, 934608. [Google Scholar] [CrossRef]
- Albouy, C.; Delattre, V.; Donati, G.; Frölicher, T.L.; Albouy-Boyer, S.; Rufino, M.; Pellissier, L.; Mouillot, D.; Leprieur, F. Global vulnerability of marine mammals to global warming. Sci. Rep. 2020, 10, 548. [Google Scholar] [CrossRef]
- Bearzi, M. Cetaceans and MPAs should go hand in hand: A case study in Santa Monica Bay, California. Ocean Coast. Manag. 2012, 60, 56. [Google Scholar] [CrossRef]
- Lusseau, D.; Bain, D.E.; Williams, R.; Smith, J.C. Vessel traffic disrupts the foraging behavior of southern resident killer whales Orcinus orca. Endanger. Species Res. 2009, 6, 211–221. [Google Scholar] [CrossRef]
- Ward, E.J.; Ford, M.J.; Kope, R.G.; Ford, J.K.; Vélez-Espino, L.A.; Parken, C.K.; LaVoy, L.; Hanson, M.B.; Balcomb, K.C. Estimating the Impacts of Chinook Salmon Abundance and Prey Removal by Ocean Fishing on Southern Resident Killer Whale Population Dynamics; U.S. Department of Commerce: Washington, DC, USA, 2013. [Google Scholar]
- Listening to the Deep Environment. Available online: http://listentothedeep.com (accessed on 11 November 2024).
- André, M.; van der Schaar, M.; Zaugg, S.; Houégnigan, L.; Sánchez, A.; Castell, J. Listening to the deep: Live monitoring of ocean noise and cetacean acoustic signals. Mar. Pollut. Bull. 2021, 63, 18–26. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.0.2; R Foundation for Statistical Computing: Vienna, Austria, 2021.
- Python Software Foundation. Python Language Reference, Version 3.7.3.; Python Software Foundation: Wilmington, DE, USA, 2019.
- Wang, L.; Ward, J.; Robinson, S. Standard for Data Processing of Measured Data (Draft). Report of the EU INTERREG Joint Monitoring Programme for Ambient Noise North Sea (JOMOPANS). 2019. Available online: https://northsearegion.eu/jomopans/output-library/ (accessed on 21 June 2020).
- Prieto González, R.; van der Schaar, M.; André, M. Deliverable 8.1: Utilising bioacoustic data as a proxy for biodiversity/ecosystem health monitoring. In Joint Framework for Ocean Noise in the Atlantic Seas (JONAS) EAPA_52/2018; University College Cork: Cork, Ireland, 2022. [Google Scholar]
- Longden, E.G.; Gillespie, D.; Mann, D.A.; McHugh, K.A.; Rycyk, A.M.; Wells, R.S.; Tyack, P.L. Comparison of the marine soundscape before and during the COVID-19 pandemic in dolphin habitat in Sarasota Bay, FL. J. Acoust. Soc. Am. 2022, 152, 3170–3185. [Google Scholar] [CrossRef]
- Miksis-Olds, J.L.; Martin, B.S.; Lowell, K.; Verlinden, C.; Heaney, K.D. Minimal COVID-19 quieting measured in the deep offshore waters of the US Outer Continental Shelf. JASA Express Lett. 2022, 2, 090801. [Google Scholar] [CrossRef]
- McDonald, M.A.; Hildebrand, J.A.; Wiggins, S.M. Increases in deep ocean ambient noise in the northeast pacific west of San Nicolas island, California. J. Acoust. Soc. Am. 2006, 120, 711–718. [Google Scholar] [CrossRef]
- Vagle, S.; Burnham, R.E.; O’Neill, C.; Yurk, H. Variability in anthropogenic underwater noise due to bathymetry and sound speed characteristics. J. Mar. Sci. Eng. 2021, 9, 1047. [Google Scholar] [CrossRef]
- Mustonen, M.; Klauson, A.; Andersson, M.; Clorennec, D.; Folegot, T.; Koza, R.; Pajala, J.; Persson, L.; Tegowski, J.; Tougaard, J.; et al. Spatial and temporal variability of ambient underwater sound in the Baltic sea. Sci. Rep. 2019, 9, 13237. [Google Scholar] [CrossRef]
- Klusek, Z.; Lisimenka, A. Seasonal and diel variability of the underwater noise in the Baltic Sea. J. Acoust. Soc. Am. 2016, 139, 1537–1547. [Google Scholar] [CrossRef]
- Parsons, E.; Baulch, S.; Bechshoft, T.; Bellazzi, G.; Bouchet, P.; Cosentino, A.; Godard-Codding, C.; Gulland, F.; Hoffmann-Kuhnt, M.; Hoyt, E.; et al. Key research questions of global importance for cetacean conservation. Endanger. Species Res. 2015, 27, 113–118. [Google Scholar] [CrossRef]
- Tort Castro, B.; Prieto Gonzalez, R.; O’Callaghan, S.A.; Dominguez Rein-Loring, P.; Degollada Bastos, E. Ship Strike Risk for Fin Whales (Balaenoptera physalus) Off the Garraf coast, Northwest Mediterranean Sea. Front. Mar. Sci. 2022, 9, 867287. [Google Scholar] [CrossRef]
- Bejder, L.; Samuels, A.; Whitehead, H.; Gales, N.; Mann, J.; Connor, R.; Heithaus, M.; Watson-Capps, J.; Flaherty, C.; Krützen, M. Decline in relative abundance of bottlenose dolphins exposed to long-term disturbance. Conserv. Biol. 2006, 20, 1791–1798. [Google Scholar] [CrossRef]
- Lusseau, D. Residency pattern of bottlenose dolphins Tursiops spp. in Milford Sound, New Zealand, is related to boat traffic. Mar. Ecol. Prog. Ser. 2005, 295, 265–272. [Google Scholar] [CrossRef]
- Van der Schaar, M.; Zaugg, S.; André, M. Sounds in Japan’s Deep: Long-Term Monitoring of Fin Whales. ECO Special Issue Ocean Sound. 2019, pp. 52–55. Available online: https://digital.ecomagazine.com/publication/frame.php?i=598395&p=&pn=&ver=html5&view=articleBrowser&article_id=3416330" (accessed on 11 November 2024).
- Oleson, E.M.; Širović, A.; Bayless, A.R.; Hildebrand, J.A. Synchronous seasonal change in fin whale song in the North Pacific. PLoS ONE 2014, 9, e115678. [Google Scholar] [CrossRef]
- Širović, A.; Oleson, E.M.; Buccowich, J.; Rice, A.; Bayless, A.R. Fin whale song variability in southern California and the Gulf of California. Sci. Rep. 2017, 7, 10126. [Google Scholar] [CrossRef]
- Sugioka, H.; Kyo, M.; Yoshida, R.; Yamada, H.; Kato, H. Detection and characterization of whale signals using seafloor cabled seismic networks offshore Japan. In Proceedings of the OCEANS 2015-MTS/IEEE, Washington, DC, USA, 19–22 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Buchan, S.; Gutierrez, L.; Balcazar-Cabrera, N.; Stafford, K. Seasonal occurrence of fin whale song off Juan Fernandez, Chile. Endanger. Species Res. 2019, 39, 135–145. [Google Scholar] [CrossRef]
- Tyack, P.L.; Miksis-Olds-Olds, J.; Urban, E.R., Jr.; Ausubel, J. Measuring ambient ocean sound during the COVID-19 pandemic. Eos 2021, 102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto González, R.; Affatati, A.; van der Schaar, M.; André, M. Trends of Ocean Underwater Acoustic Levels Recorded Before, During, and After the 2020 COVID Crisis. Environments 2024, 11, 266. https://doi.org/10.3390/environments11120266
Prieto González R, Affatati A, van der Schaar M, André M. Trends of Ocean Underwater Acoustic Levels Recorded Before, During, and After the 2020 COVID Crisis. Environments. 2024; 11(12):266. https://doi.org/10.3390/environments11120266
Chicago/Turabian StylePrieto González, Rocío, Alice Affatati, Mike van der Schaar, and Michel André. 2024. "Trends of Ocean Underwater Acoustic Levels Recorded Before, During, and After the 2020 COVID Crisis" Environments 11, no. 12: 266. https://doi.org/10.3390/environments11120266
APA StylePrieto González, R., Affatati, A., van der Schaar, M., & André, M. (2024). Trends of Ocean Underwater Acoustic Levels Recorded Before, During, and After the 2020 COVID Crisis. Environments, 11(12), 266. https://doi.org/10.3390/environments11120266