Clean Energy and Carbon Emissions in Mexico’s Electric Power Sector: Past Performance and Current Trend
<p>Generation from renewables and nuclear (<b>left graph</b>) and fossil fuels (<b>right graph</b>), based on technology-aggregated hourly data reported by CENACE for the Mexican power system (SEN) and the 2017–2023 period. These numbers do not include distributed generation from solar and biomass; see <a href="#energies-17-05859-t003" class="html-table">Table 3</a> for that information.</p> "> Figure 2
<p>(<b>Left graph</b>) Clean electricity generation in Mexico for the 2018–2022 period as reported by the authorities and regrouped into broad categories. Large-scale renewables and nuclear are reported on an hourly basis by CENACE; the other categories are only reported as annual figures (through the National Energy Balance (BNE)). (<b>Right graph</b>) Fossil and clean energy fractions. Clean fossil energy is defined in the regulatory document A/018/2023, which also defines new criteria for efficient cogeneration.</p> "> Figure 3
<p>Consolidated fuel consumption time series for the 2014–2022 for the four main fuels used in electricity generation in the Mexican power system. Continuous lines indicate the proposed consensus values, whereas the grey areas indicate the max/min error range. In the case of natural gas, an additional fuel consumption curve was included based on the sum rule <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">∑</mo> <mrow> <mrow> <mrow> <msub> <mrow> <mi>E</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mrow> <mi>η</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mrow> <mo stretchy="false">∑</mo> <mrow> <msub> <mrow> <mi>F</mi> </mrow> <mrow> <mi>j</mi> </mrow> </msub> </mrow> </mrow> </mrow> </mrow> </mrow> </semantics></math> and average efficiency values <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>η</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </semantics></math> for each technology class <math display="inline"><semantics> <mrow> <mi>i</mi> </mrow> </semantics></math>. See <a href="#secAdot3-energies-17-05859" class="html-sec">Appendix A.3</a> for further explanations.</p> "> Figure 4
<p>(<b>Left</b>): Cumulative installed wind power capacity in Mexico for the period 2008–2025; values for 2023–2025 have been estimated; see text for details. A logistic fit has been added, based on 3-year moving averages. (<b>Right</b>): Annual additions of wind power capacity and their 3-year moving averages. Source: Own elaboration based on data provided by the Mexican Wind Energy Association [<a href="#B35-energies-17-05859" class="html-bibr">35</a>].</p> "> Figure 5
<p>(<b>Left</b>): Cumulative installed large-scale solar PV power capacity in Mexico for the period 2008–2025; values for 2023–2025 have been estimated; see text for details. A logistic fit has been added, based on 3-year moving averages. (<b>Right</b>): Annual additions of large-scale solar PV power capacity and their 3-year moving averages. Source: Own elaboration, based on data from the Mexican Solar Energy Association [<a href="#B36-energies-17-05859" class="html-bibr">36</a>].</p> "> Figure 6
<p>(<b>Left</b>): Cumulative installed distributed solar PV power capacity in Mexico for the period 2008–2025; the value for 2023 has been estimated; see text for details. Both a logistic and an exponential fit have been added. (<b>Right</b>): Annual additions of distributed solar PV power capacity. Source: Own elaboration based on data from the Mexican Solar Energy Association [<a href="#B36-energies-17-05859" class="html-bibr">36</a>].</p> "> Figure 7
<p>(<b>Left</b>): Life-cycle CO<sub>2,eq</sub> emissions from fossil fuels for the Mexican power system (SEN) by fuel types, based on the reported fuel consumption values for electricity consumption. (<b>Right</b>): Life-cycle emissions of CO<sub>2,eq</sub> from renewable and nuclear energy. In the case of natural gas, an additional emission curve was included based on the sum rule <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">∑</mo> <mrow> <mrow> <mrow> <msub> <mrow> <mi>E</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mrow> <mi>η</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mrow> <mo stretchy="false">∑</mo> <mrow> <msub> <mrow> <mi>F</mi> </mrow> <mrow> <mi>j</mi> </mrow> </msub> </mrow> </mrow> </mrow> </mrow> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>η</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </semantics></math> is the average efficiency value for each technology class <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>.</mo> </mrow> </semantics></math> See <a href="#secAdot3-energies-17-05859" class="html-sec">Appendix A.3</a> for further explanations.</p> "> Figure 8
<p>Emission factors of the Mexican power system determined in this work and their comparison with the official numbers published by the Secretary of the Environment (SEMARNAT). See <a href="#secAdot3-energies-17-05859" class="html-sec">Appendix A.3</a> for an explanation of the sum rule value for natural gas consumption.</p> "> Figure 9
<p>Historical and projected electricity generation from fossil fuels (<b>left</b>) and renewables, including distributed solar, and nuclear (<b>right</b>) for the 2017–2026 period.</p> "> Figure 10
<p>Historical and projected GHG emissions (<b>left graph</b>) and clean energy fractions (<b>right graph</b>) for the 2017–2026 period. The average hydro scenario has been considered in the right graph, except for the curve identifying large-scale (LS) renewables and nuclear, for which the low–high hydro range has been indicated as well. Clean energy additions from items fuel-free fossil energy and auxiliary cooling for 2022 onwards have their regulatory standing in the disposition A/018/2023. Distributed biomass is only mentioned in recent reports of the National Energy Balance (BNE).</p> "> Figure A1
<p>Main elements of the fuel-technology matrix for the period 2017–2022 determined with the methodology described in the annex. The error margin corresponds to ± one standard deviation. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mrow> <mi>CC</mi> <mo>,</mo> <mi>NG</mi> </mrow> </mrow> </msub> </mrow> </semantics></math> = fraction of total natural gas (NG) consumption burned in combined-cycle (CC) plants. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mrow> <mi>SC</mi> <mo>,</mo> <mi>NG</mi> </mrow> </mrow> </msub> </mrow> </semantics></math> = fraction of total natural gas (NG) consumption burned in single-cycle (SC) gas turbines. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mrow> <mi>CS</mi> <mo>,</mo> <mi>NG</mi> </mrow> </mrow> </msub> </mrow> </semantics></math> = fraction of total natural gas (NG) consumption burned in conventional steam (CS) gas turbines. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mrow> <mi>CC</mi> <mo>,</mo> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </semantics></math> = fraction of total Diesel (D) consumption burned in combined-cycle (CC) plants. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mrow> <mi>CS</mi> <mo>,</mo> <mi>FO</mi> </mrow> </mrow> </msub> </mrow> </semantics></math> = fraction of total fuel oil (FO) consumption burned in conventional steam (CS) plants. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mrow> <mi>CPP</mi> <mo>,</mo> <mi>FO</mi> </mrow> </mrow> </msub> </mrow> </semantics></math> = fraction of total fuel oil (FO) consumption burned in coal power plants (CPPs). Sum rule values were calculated from <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">∑</mo> <mrow> <mrow> <mrow> <msub> <mrow> <mi>E</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mrow> <mi>η</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mrow> <mo stretchy="false">∑</mo> <mrow> <msub> <mrow> <mi>F</mi> </mrow> <mrow> <mi>j</mi> </mrow> </msub> </mrow> </mrow> </mrow> </mrow> </mrow> </semantics></math> and average efficiency values <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>η</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </semantics></math> for each technology class <math display="inline"><semantics> <mrow> <mi>i</mi> </mrow> </semantics></math>. See <a href="#secAdot3-energies-17-05859" class="html-sec">Appendix A.3</a> for further explanations. Horizontal dotted lines delimit the range of the fuel-fraction factors (<math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>≤</mo> <mn>1</mn> </mrow> </semantics></math>). Note that all predicted <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math> values fall within the range limits within the margins of error.</p> ">
Abstract
:1. Introduction
2. Research Questions
- (1)
- How have Mexico’s electricity generation mix and the share of “clean” energy evolved? How consistent has the methodology for determining clean energy been over the years?
- (2)
- What has been the progress on the installed capacity of large-scale wind and solar power plants, as well as distributed solar?
- (3)
- Based on reported fuel consumption data available for the 2017–2022 period, how have the emissions of electricity-related greenhouse gases (GHGs) changed over time?
- (4)
- How are the GHG emissions projected to evolve in the near future, based on the observed progress of both state-owned and privately funded generation projects?
- (5)
- Is Mexico on track to meet its clean energy targets for 2024 and beyond? And, to what extent is the reported clean energy fraction a good predictor of GHG emissions?
3. The Clean Energy Concept in Mexico
4. Data Sources and Methodology
4.1. Clean Energy Figures
4.2. Calculation of Fuel Consumption Values and Greenhouse Gas Emissions
- (a)
- The annual National Energy Balance reports [27] (SENER) contain detailed annual numbers for hydrocarbon production, particularly natural gas, fuel oil, coal and Diesel and their utilization in the power sector. In recent reports, clean energy figures are also reported.
- (b)
- The governmental portal SIE (Information Energy System) offers access to data from different data sources. The SIE was used for queries of the following items:
- Annual data for hydrocarbon fuel consumption for electricity generation, as reported by the Energy Regulatory Commission (CRE, for its Spanish acronym). This data source will be referred to as SIE/CRE.
- Monthly values for natural gas consumption for electricity generation, as compiled by the Mexican Institute of Petroleum (IMP, for its Spanish acronym). This data source will be referred to as SIE/IMP.
- Annual values for coal consumption for electricity generation, as reported by the National Coal Balance (BNC, for its Spanish acronym), referred to as SIE/BNC.
- (c)
- Data from The Statistical World Review of Energy [28], through the web portal Our World in Data, were used to query electricity data by fuel for the case of Mexico for comparisons.
4.3. Short-Term Outlook (2024–2026)
- (a)
- (b)
- (c)
- Research into the progress of pending fossil fuel generation projects by private investors, based on a generator database developed in the work of Miranda et al. [37], was conducted.
- (d)
- The new capacities were assumed to generate with net capacity factors (NCFs) corresponding figures for the 2017–2023 period.
- (e)
- Generation figures were calculated for three hydroelectric scenarios: (i) low hydro generation (taken as the generation for 2023), (ii) high generation (2022), and (iii) typical generation (average of the period 2017–2023).
- (f)
- Re-dispatch was conducted based on the following principles: (i) existing coal, conventional steam, internal combustion, and single-cycle gas turbine plants were reduced down to their minimum generation levels observed during the 2017–2023 period, (ii) required additional reductions in generator output were achieved by reducing the output of existing combined-cycle plants and curtailing the existing renewable energy fleet in equal parts, (iii) missing energy, where required, was provided by (slightly) increasing the output of the existing combined-cycle fleet.
- (g)
- Predicted fuel consumption values for 2023–2026 were estimated using the technology-fuel matrix method described in Appendix A, using reported and projected electricity generation data for 2023 and 2024–2026, respectively.
5. Results and Discussion
5.1. Observed and Official Clean Energy Production Figures for the 2017–2023 Period
Technology/Year | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|
Wind | 10,454,444 | 12,432,826 | 16,520,991 | 19,684,175 | 21,049,271 | 20,304,826 | 20,695,412 |
Solar PV | 346,947 | 2,174,394 | 7,980,058 | 13,517,173 | 17,070,210 | 16,287,206 | 18,209,982 |
Biomass | 2886 | 75,399 | 105,861 | 89,394 | 98,872 | 95,362 | 96,693 |
Coal | 28,663,360 | 27,345,012 | 22,034,690 | 12,510,530 | 8,704,632 | 14,192,507 | 14,247,160 |
Combined-cycle plants | 154,289,170 | 160,670,910 | 171,877,440 | 183,672,570 | 184,356,620 | 194,013,140 | 203,586,556 |
Internal combustion | 2,333,057 | 2,564,187 | 3,170,767 | 2,873,152 | 2,057,782 | 1,843,928 | 3,634,595 |
Geothermal | 5,706,169 | 5,023,157 | 5,056,714 | 4,508,830 | 4,198,437 | 4,368,535 | 4,113,117 |
Hydro | 31,660,120 | 32,203,712 | 23,879,279 | 26,804,751 | 34,697,076 | 35,556,117 | 20,548,855 |
Nuclear | 10,571,136 | 13,198,780 | 10,971,859 | 10,864,278 | 11,605,475 | 10,539,513 | 12,043,370 |
Conventional steam | 43,993,068 | 40,408,219 | 39,260,648 | 23,378,736 | 23,200,245 | 21,118,786 | 31,182,527 |
Single-cycle gas turbines | 14,687,034 | 14,379,489 | 16,401,278 | 14,133,336 | 16,276,667 | 15,487,650 | 17,855,481 |
Total renewables | 48,170,567 | 51,909,488 | 53,542,904 | 64,604,323 | 77,113,866 | 76,612,046 | 63,664,059 |
Total clean energy | 58,741,703 | 65,108,268 | 64,514,763 | 75,468,601 | 88,719,341 | 87,151,559 | 75,707,430 |
Total fossil energy | 243,965,689 | 245,367,817 | 252,744,823 | 236,568,324 | 234,595,947 | 246,656,011 | 270,506,319 |
Clean energy fraction | 19.4% | 21.0% | 20.3% | 24.2% | 27.4% | 26.1% | 21.9% |
5.2. Fuel Consumption for Electricity Generation
5.2.1. Coal
5.2.2. Natural Gas
5.2.3. Fuel Oil
5.2.4. Consolidated Fuel Consumption Values
5.3. Evolution of Installed Capacity for Wind and Solar Generation
5.4. Carbon Emissions from the Power Sector for the 2017–2022 Period
5.5. Projected Clean Energy Production and GHG Emissions Through 2026
5.6. Critical Discussion of the Research Questions
- (1)
- The evolution of the clean energy fraction. The total clean energy fraction (including nuclear and efficient cogeneration) increased from 22.5% in 2018 to 28.7% in 2022 (Figure 2); if the change in methodology introduced by agreement A/018/2023 is applied to the 2022 generation figures, then the clean energy figure rises to 31.1%. The difference is explained by certain fractions of fossil fuel-based generation which are considered clean under the A/018/2023 methodology.
- (2)
- The progress on large-scale wind and solar, and distributed solar. As shown in Figure 4 and Figure 5, both wind and solar utility-scale installations follow logistic growth curves reaching their asymptotic values of about 8 GW each around 2025 or 2026; this clearly indicates that large-scale wind and solar are currently stalled in Mexico. Regarding distributed solar, as evidenced by Figure 6, installations still continue to rise, but a logistic growth trend is already discernible, demonstrating that growth no longer occurs unobstructed.
- (3)
- The evolution of GHG emissions through 2022. As shown in Figure 8, the emission intensity showed a favorable evolution during the 2017–2022 period, with a reduction of the emission factor from 0.56 to 0.46 g/CO2,eq. Total GHG emissions also showed a downward trend in the initial years but then stabilized.
- (4)
- The projected evolution of GHG emissions in the near future. It can be seen from Figure 10 that both the total GHG emissions and the emission intensity show a significant rise, from some 145 Gt CO2,eq/a in 2020–2021 to 190 Gt CO2,eq/a in 2026 and from 0.46 g/CO2,eq to 0.5 g/CO2,eq, respectively.
- (5)
- Compliance with national clean energy targets. (a) The clean energy fraction remains well below the official 35% target for 2024, even if contributions from clean fossil energy, as defined in agreement A/018/2023, are factored in. For the projection period, this gap is predicted to widen further; without contributions from clean fossil energy, the clean energy fraction for the 2024–2026 hovers around 26%; with the inclusion of clean fossil energy concepts introduced by A/018/2023, this value increases to about 27%, but remains well below the official targets. More importantly, given the substantial projected increase in GHG emissions during the projection period, the clean energy fraction loses its role as an indicator of the progress in decarbonization.
6. Summary and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMDEE | Mexican Wind Energy Association |
ASOLMEX | Mexican Solar Energy Association |
BNC | National Coal Balance |
BNE | National Energy Balance |
CCGT | Combined-Cycle Gas Turbine power plant |
CEL | Clean Energy Certificate (Mexico) |
CENACE | Operator of the electric power grid and the wholesale market (Mexico) |
CFE | Mexico’s state utility |
CPP | Coal-fired power plant |
CRE | Energy Regulatory Commission (Mexico) |
CS | Conventional steam power plant |
GHG | Greenhouse Gas |
ICE | Internal Combustion Engine based power plant |
IMP | Mexican Petroleum Institute |
LIE | Electricity Industry Law (Mexico) |
MEM | Wholesale Electricity Market (Mexico) |
NDC | Nationally Determined Contribution |
SEN | The Mexican electric power system |
SENER | Secretary of Energy (Mexico) |
SEMARNAT | Secretary of the Environment (Mexico) |
SIE | Energy Information System (Mexico) |
SCGT | Single-Cycle Gas Turbine power plant |
VRE | Variable Renewable Energy source or technology |
Appendix A. Estimation of Future Fuel Consumption Data
Appendix A.1. Technology-Fuel Matrix
Technology | Fuels | |||
---|---|---|---|---|
Natural Gas (NG) | Diesel (D) | Fuel Oil (FO) | Coal (C) | |
Combined-cycle (CC) plants | 0 | 0 | ||
Single-cycle (SC) gas turbines | 0 | 0 | ||
Conventional steam (CS) plants | 0 | 0 | ||
Coal power plants (CCPs) | 0 | 0 | ||
Internal combustion (IC) plants | 0 |
Appendix A.2. Uncertainty Measures
Appendix A.3. Estimation of Natural Gas Consumption from a Sum Rule
Appendix A.4. Estimation of Future Fuel Consumptions
References
- IPCC. Climate Change 2023. AR6 Synthesis Report. 2023. Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 18 November 2024).
- Cullet, P. Chapter 8: Common but Differentiated Responsibilities. In Research Handbook on Environmental Law; Fitzmaurice, M., Ong, D.M., Merkouris, P., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2010. [Google Scholar] [CrossRef]
- Climate Action Tracker. Country Profile Mexico. 2022. Available online: https://climateactiontracker.org/countries/mexico/ (accessed on 30 March 2024).
- Buira, D.; Tovilla, J.; Farbes, J.; Jones, R.; Haley, B.; Gastelum, D. A whole-economy Deep Decarbonization Pathway for Mexico. Energy Strategy Rev. 2021, 33, 100578. [Google Scholar] [CrossRef]
- Sinha, A.; Venkatesh, A.; Jordan, K.; Wade, C.; Eshraghi, H.; de Queiroz, A.R.; Jaramillo, P.; Johnson, J.X. Diverse decarbonization pathways under near cost-optimal futures. Nat. Commun. 2024, 15, 8165. [Google Scholar] [CrossRef] [PubMed]
- Denholm, P.; Brown, P.; Cole, W.; Mai, T.; Sergi, B.; Brown, M.; Jadun, P.; Ho, J.; Mayernik, J.; McMillan, C.; et al. Examining Supply-Side Options to Achieve 100% Clean Electricity by 2035; NREL/TP-6A40-81644; National Renewable Energy Laboratory: Golden, CO, USA, 2022. Available online: https://www.nrel.gov/docs/fy22osti/81644.pdf (accessed on 18 November 2024).
- Bistline, J.E.T. The importance of temporal resolution in modeling deep decarbonization of the electric power sector Environ. Res. Lett. 2021, 16, 084005. [Google Scholar] [CrossRef]
- Luo, S.; Hu, W.; Liu, W.; Zhang, Z.; Bai, C.; Huang, Q.; Chen, Z. Study on the decarbonization in China’s power sector under the background of carbon neutrality by 2060. Renew. Sustain. Energy Rev. 2022, 166, 112618. [Google Scholar] [CrossRef]
- Fan, J.L.; Li, Z.; Huang, X.; Li, K.; Zhang, X.; Lu, X.; Wu, J.; Hubacek, K.; Shen, B. A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage. Nat. Commun. 2023, 14, 5972. [Google Scholar] [CrossRef] [PubMed]
- Ake, S.C.; Arango, F.O.; Ruiz, R.S.G. Possible paths for Mexico’s electricity system in the clean energy transition. Util. Policies 2024, 87, 101716. [Google Scholar]
- SENER. Reporte de Avance de Energías Limpias. 2016. Available online: https://www.gob.mx/cms/uploads/attachment/file/118995/Informe_Renovables_2015_2.pdf (accessed on 30 March 2024).
- Cole, W.; Antonysamy, A.; Brown, P.; Sergi, B.; Mai, T.; Denholm, P. How much might it cost to decarbonize the power sector? It depends on the metric. Energy 2023, 276, 127608. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Lim, H.; Lee, J. Decarbonizing road transport in Korea: Role of electric vehicle transition policies. Transp. Res. Part D Transp. Environ. 2024, 128, 104084. [Google Scholar] [CrossRef]
- Masuku, C.M.; Caulkins, R.S.; Siirola, J.J. Process decarbonization through electrification. Curr. Opin. Chem. Eng. 2024, 44, 101011. [Google Scholar] [CrossRef]
- Farfan, J.; Lohrmann, A. Gone with the clouds: Estimating the electricity and water footprint of digital data services in Europe. Energy Convers. Manag. 2023, 290, 117225. [Google Scholar] [CrossRef]
- CRE. Resolución por la que la Comisión Reguladora de Energía Expide la Metodología para el Cálculo de la Eficiencia de los Sistemas de Cogeneración Eficiente; Methodología Cogeneración Eficiente RES/003/2011; Diario Oficial de la Federación: Mexico City, Mexico, 22 February 2011. [Google Scholar]
- CRE. Resolución por la que la Comisión Reguladora de Energía Expide las Disposiciones Generales para Acreditar Sistemas de Cogeneración Eficiente; Metodología Acreditación Sistemas de Cogeneración Eficiente RES/291/2012; Diario Oficial de la Federación: Mexico City, Mexico, 22 September 2012. [Google Scholar]
- CRE. Resolución por la que se Modifica la Diversa por el que se Emitió la Metodología para el Cálculo de la Eficiencia de los Sistemas de Cogeneración Eficiente; Actualización Metodología Cogeneración Eficiente RES/206/2014; Diario Oficial de la Federación: Mexico City, Mexico, 12 June 2014. [Google Scholar]
- CRE. Resolución de la Comisión Reguladora de Energía por la que se Expiden las Disposiciones Administrativas de Carácter General que Contienen los Criterios de Eficiencia y Establecen la Metodología de Cálculo para Determinar el Porcentaje de Energía libre de; Metodología Porcentaje de Energía libre RES/1838/2016; Diario Oficial de la Federación: Mexico City, Mexico, 22 December 2016. [Google Scholar]
- Presidencia. Decreto por el que se Expiden la Ley de la Industria Eléctrica, la Ley de Energía Geotérmica y se Adicionan y Reforman Diversas Disposiciones de la Ley de Aguas Nacionales; Ley de la Industria Eléctrica; Diario Oficial de la Federación: Mexico City, Mexico, 11 August 2014. [Google Scholar]
- Llamas, A.; Probst, O. On the role of efficient cogeneration for meeting Mexico’s clean energy goals. Energy Policy 2018, 112, 173–183. [Google Scholar] [CrossRef]
- CRE. Acuerdo Núm. A/018/2023 de la Comisión Reguladora de Energía por el que se Actualizan los Valores de Referencia de las Metodologías para el Cálculo de la Eficiencia de los Sistemas de Cogeneración de Energía Eléctrica y los Criterios para Determinar la CE; Acuerdo A/018/2023 Energía Libre de Combustible; Diario Oficial de la Federación: Mexico City, Mexico, 26 May 2023. [Google Scholar]
- SENER. Balance Nacional de Energía 2022. 2022. Available online: https://base.energia.gob.mx/BNE/BalanceNacionalDeEnerg%C3%ADa2022.pdf (accessed on 18 November 2024).
- SENER. Programa de Desarrollo del Sector Eléctrico 2023–2037. Reporte de Avance de Energías Limpias. Mexico City. 29 May 2023. Available online: https://base.energia.gob.mx/PRODESEN2023/Anexo3.pdf (accessed on 18 November 2024).
- INECC. Inventario Nacional de Emisiones y Compuestos de Efecto Invernadero 2020–2021. 2022. Available online: https://www.gob.mx/cms/uploads/attachment/file/853373/10-2023_INEGyCEI_2020_2021.xlsx (accessed on 18 November 2024).
- SEMARNAT. Registro Nacional de Emisiones 2015–2018. 2020. Available online: https://www.gob.mx/cms/uploads/attachment/file/776803/informe_rene_emisiones_2015-2018.pdf (accessed on 18 November 2024).
- SENER. (n.d.). Balance Nacional de Energía. Available online: https://www.gob.mx/sener/es/articulos/balance-nacional-de-energia-296106 (accessed on 18 November 2024).
- Energy Institute-Statistical Review of World Energy (2024)–with Major Processing by Our World in Data. “Share of Primary Energy Consumption that Comes from Fossil Fuels–Using the Substitution Method” [Dataset]. Energy Institute, “Statistical Review of World Energy” [Original Data]. Available online: https://ourworldindata.org/grapher/fossil-fuels-share-energy (accessed on 18 November 2024).
- NREL. Life Cycle Greenhouse Gas Emissions from Electricity Generation: Update. 2021. Available online: https://www.nrel.gov/docs/fy21osti/80580.pdf (accessed on 18 November 2024).
- Gordon, D.; Reuland, F.; Worden, J.R.; Jacob, D.J.; Shindell, D.; Dyson, M. Evaluating net life-cycle greenhouse gas emissions intensities. Environ. Res. Lett. 2023, 18, 084008. [Google Scholar] [CrossRef]
- Gibon, T.; Hahn Menacho, Á.; Guiton, M. Carbon Neutrality in the UNECE Region: Integrated Life-Cycle Assessment of Electricity Sources; UNECE: Geneva, Switzerland, 2022. [Google Scholar]
- LAPEM. Guía CFE-SPA00-55. Guide for Preparing the Inventory of Gas Emissions from the Operation of Power Plants that Consume Fossil Fuels. August 2016. Available online: https://lapem.cfe.gob.mx/normas/pdfs/v/SPA00-55.pdf (accessed on 18 November 2024). (In Spanish).
- CFE. Plan de Negocios 2021–2025. Versión Pública. 2021. Available online: https://www.cfe.mx/finanzas/Documents/Plan%20de%20Negocios%20CFE%202021.pdf (accessed on 18 November 2024).
- CFE. Plan de Negocios 2022–2026. Versión Pública. 2022. Available online: https://www.cfe.mx/finanzas/documents/plan%20de%20negocios%202022-2026%20v48%20publica.pdf (accessed on 18 November 2024).
- AMDEE. Status of Wind Projects in Mexico; Asociación Mexicana de Energía Eólica. Private Communication: Mexico City, Mexico, 2023. [Google Scholar]
- ASOLMEX. Inventario Solar; Asociación Mexicana de Energía Solar. Private Communication: Mexico City, Mexico, 2023. [Google Scholar]
- Miranda, K.; Tarín-Santiso, A.; Llamas, A.; Probst, O. The electricity generation dispatch in Mexico: An uncertain road towards sustainability. Energies 2022, 15, 8831. [Google Scholar] [CrossRef]
- PIIRCE. Programa Indicativo para la Instalación y el Retiro de Centrales Eléctricas v2018; Secretaría de Energía (SENER): Mexico City, Mexico, 2018. [Google Scholar]
- Vera, M.S.; Manrique, L.G.; Peña, I.R.; Navarro, A.D.L.V. Drivers of electricity GHG emissions and the role of natural gas in Mexican energy transition. Energy Policy 2023, 173, 113316. [Google Scholar] [CrossRef]
- Vandermeer, J. How Populations Grow: The Exponential and Logistic Equations. Nat. Educ. Knowl. 2010, 3, 15. [Google Scholar]
- Lenoir, T.; US Interconnection Queues Analysis 2023. S&P Global Market Intelligence. 28 August 2023. Available online: https://www.spglobal.com/market-intelligence/en/news-insights/research/us-interconnection-queues-analysis-2023 (accessed on 18 November 2024).
- Brown, S.; Jones, D. European Electricity Review 2024. Ember. 2024. Available online: https://ember-climate.org/insights/research/european-electricity-review-2024/#supporting-material (accessed on 18 November 2024).
- IRENA. (n.d.). Renewable Capacity Statistics 2023. Available online: https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023 (accessed on 18 November 2024).
- California Distributed Generation Statistics. 31 January 2024. Available online: https://www.californiadgstats.ca.gov/ (accessed on 18 November 2024).
- SA Power Network. (s.f.). Distributed Energy Transition Road Map 2020–2025. Available online: https://www.sapowernetworks.com.au/public/download.jsp?id=319084 (accessed on 18 November 2024).
- The European Comission. Carbon Border Adjustment Mechanism. 2024. Available online: https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en (accessed on 31 March 2024).
- Chojkiewicz, E.; Paliwal, U.; Abhyankar, N.; Baker, C.; O’Connell, R.; Callaway, D.; Phadke, A. Accelerating Transmission Expansion by Using Advanced Conductors in Existing Right-of-Way. 2024. Available online: https://haas.berkeley.edu/wp-content/uploads/WP343.pdf (accessed on 18 November 2024).
- Barnés de Castro, F. Retos y Oportunidades del Sector Energético; Fundación UNAM: Mexico City, Mexico, 19 August 2021. [Google Scholar]
Fuel Type/Technology | Life-Cycle Emissions [gCO2eq/kWhe] | Life-Cycle Emissions [ktCO2eq/PJfuel] |
---|---|---|
Biomass | 52 | - |
Solar photovoltaic | 43 | - |
Geothermal energy | 37 | - |
Hydropower | 21 | - |
Wind power | 13 | - |
Nuclear power | 13 | - |
Natural gas | - | 69 |
(Fuel) oil | - | 72 |
Coal | - | 112 |
Diesel | - | 73 |
Technology | Source | Electricity Generation [PJ] | ||||
---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | 2022 | ||
Hydroelectricity | CENACE | 115.9 | 86.0 | 96.4 | 124.9 | 128.0 |
Hydroelectricity | BNE | 116.0 | 85.0 | 96.5 | 125.0 | 128.0 |
Geothermal | CENACE | 18.1 | 18.2 | 16.2 | 15.1 | 15.7 |
Geothermal | BNE | 18.2 | 18.2 | 16.5 | 15.3 | 15.9 |
Wind | CENACE | 44.8 | 59.5 | 70.8 | 75.8 | 73.1 |
Wind | BNE | 44.8 | 60.2 | 70.9 | 75.9 | 73.9 |
Solar photovoltaic | CENACE | 7.8 | 28.7 | 48.6 | 61.5 | 58.6 |
Solar photovoltaic (large-scale) | BNE | 7.8 | 30.2 | 48.7 | 61.4 | 58.6 |
Solar photovoltaic (dist. generation) | BNE | 3.7 | 5.6 | 8.3 | 11.2 | 14.6 |
Solar photovoltaic (isolated supply) | BNE | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 |
Solar photovoltaic (FIRCO program) | BNE | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Biomass | CENACE | 0.3 | 0.4 | 0.3 | 0.4 | 0.3 |
Bioenergy (total) | BNE | 7.2 | 6.7 | 7.9 | 5.7 | 7.7 |
Nuclear | CENACE | 47.5 | 39.5 | 39.0 | 41.8 | 37.9 |
Nuclear | BNE | 47.5 | 39.2 | 39.1 | 41.8 | 37.9 |
Regenerative brakes | BNE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Efficient cogeneration | BNE | 8.7 | 12.2 | 15.5 | 12.3 | 15.1 |
Fossil fuel-free energy | BNE | 0.0 | 0.0 | 0.0 | 0.0 | 27.0 |
Auxiliary cooling | BNE | 0.0 | 0.0 | 0.0 | 0.0 | 3.3 |
Batteries | BNE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Coal | Natural Gas/Dry Gas | Fuel Oil/Oil | Diesel | Pcoke | Other | Lgas | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | SIE/CRE (1) | SIE/BNC (2) | BNE | OWD (12) | SIE/CRE | SIE/IMP (3) | BNE (4) | OWD (8.5) (5) | SIE/CRE | BNE | OWD (18.5) (5) | OWD (9.3) | SIE/CRE (1) | BNE | BNE | BNE | BNE |
2014 | 326 | 357 | 358 | 377 | 513 | 1371 | 1342 | 1375 | 255 | 258 | 558 | 279 | 12 | 18 | 39 | 7 | 5 |
2015 | 329 | 362 | 363 | 378 | 588 | 1502 | 1285 | 1476 | 246 | 248 | 537 | 269 | 14 | 21 | 39 | 6 | 5 |
2016 | 341 | 373 | 373 | 381 | 610 | 1527 | 1735 | 1505 | 269 | 273 | 571 | 285 | 18 | 29 | 35 | 6 | 4 |
2017 | 289 | 317 | 317 | 342 | 474 | 1518 | 1705 | 1515 | 298 | 312 | 663 | 332 | 1537 | 31 | 39 | 4 | 2 |
2018 | 290 | 317 | 317 | 342 | 586 | 1718 | 1813 | 1670 | 257 | 270 | 646 | 323 | 26 | 40 | 38 | 0 | 4 |
2019 | 219 | 284 | 350 | 350 | 635 | 1782 | 1759 | 1598 | 233 | 258 | 573 | 286 | 33 | 50 | 34 | 2 | 0 |
2020 | 117 | 164 | 164 | 222 | 409 | 1749 | 1439 | 1660 | 135 | 138 | 585 | 292 | 18 | 24 | 38 | 2 | 0 |
2021 | 61 | 79 | 79 | 159 | 1030 | 1692 | 2181 | 1695 | 164 | 238 | 594 | 297 | 24 | 33 | 35 | 404 | 0 |
2022 | 86 | N/A | 111 | 251 | 3883 | 1558 | 2216 | 1622 | 160 | 229 | 873 | 436 | 41 | 60 | 38 | 34 | 0 |
Year | Additions by CFE (State Utility) [MW] | Private Generators [MW] | |||||||
---|---|---|---|---|---|---|---|---|---|
CCGT | ICE | SCGT | PV-LS | Geo | Hydro | Wind | PV-LS | PV-DG | |
2024 | 409 | 1038 | 103 | 120 | 25 | 83 | 168 | 825 | 648 |
2025 | 5801 | - | - | 300 | - | 83 | 356 | 261 | 393 |
2026 | 348 | - | - | - | - | 83 | 355 | 261 | 314 |
Total | 6558 | 1038 | 103 | 420 | 25 | 248 | 879 | 1347 | 1355 |
Grand total | 7699 | 693 | 3581 |
Renewables | New Generation CFE [GWh] | New Private Generation [GWh] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Total | Fossil | DRE | VRE | CCGT | ICE | SCGT | PV-LS | Geo | Hydro | Wind | PV-LS | PV-DG |
2024 | 8796 | 4459 | 315 | 3717 | 2615 | 1546 | 298 | 305 | 123 | 193 | 486 | 2096 | 1135 |
2025 | 49,228 | 41,555 | 508 | 6097 | 39,712 | 1546 | 298 | 1067 | 123 | 385 | 1515 | 2759 | 1824 |
2026 | 53,885 | 43,781 | 701 | 8337 | 41,937 | 1546 | 298 | 1067 | 123 | 578 | 2541 | 3422 | 2374 |
Year | Demand | Supply | Balance | |||
---|---|---|---|---|---|---|
Total Required Generation | Generation Increase | Total New Generation | Low Hydro | High Hydro | Average Hydro | |
2024 | 358,331 | 12,117 | 8796 | (3322) | 11,686 | 5465 |
2025 | 370,873 | 24,659 | 49,228 | 24,569 | 39,576 | 33,355 |
2026 | 383,853 | 37,640 | 53,885 | 16,246 | 31,253 | 25,032 |
Year | Total | Re-dispatch-Low Hydro [GWh] | |||||
CS | Coal | SCGT | ICE | CCGT | VRE Curt. | ||
2024 | 3322 | - | - | - | - | 3322 | - |
2025 | (24,569) | (10,064) | (5543) | (3722) | (1791) | (1725) | (1725) |
2026 | (16,246) | (5190) | (5543) | (3722) | (1791) | - | - |
Year | Total | Re-dispatch-High Hydro [GWh] | |||||
CS | Coal | SCGT | ICE | CCGT | VRE Curt. | ||
2024 | (11,686) | (10,064) | (1622) | - | - | - | - |
2025 | (39,576) | (10,064) | (5543) | (3722) | (1791) | (9228) | (9228) |
2026 | (31,253) | (10,064) | (5543) | (3722) | (1791) | (5067) | (5067) |
Year | Total | Re-dispatch-Typical Hydro [GWh] | |||||
CS | Coal | SCGT | ICE | CCGT | VRE Curt. | ||
2024 | (5465) | (5465) | - | - | - | - | - |
2025 | (33,355) | (10,064) | (5543) | (3722) | (1791) | (6118) | (6118) |
2026 | (25,032) | (10,064) | (5543) | (3722) | (1791) | (1957) | (1957) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Probst, O. Clean Energy and Carbon Emissions in Mexico’s Electric Power Sector: Past Performance and Current Trend. Energies 2024, 17, 5859. https://doi.org/10.3390/en17235859
Probst O. Clean Energy and Carbon Emissions in Mexico’s Electric Power Sector: Past Performance and Current Trend. Energies. 2024; 17(23):5859. https://doi.org/10.3390/en17235859
Chicago/Turabian StyleProbst, Oliver. 2024. "Clean Energy and Carbon Emissions in Mexico’s Electric Power Sector: Past Performance and Current Trend" Energies 17, no. 23: 5859. https://doi.org/10.3390/en17235859
APA StyleProbst, O. (2024). Clean Energy and Carbon Emissions in Mexico’s Electric Power Sector: Past Performance and Current Trend. Energies, 17(23), 5859. https://doi.org/10.3390/en17235859