Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models
<p>Research flowchart.</p> "> Figure 2
<p>US natural gas production and consumption factors between January 1983 to January 2021.</p> "> Figure 3
<p>Results of ACF and PACF diagrams for a selection of parameter AR (<span class="html-italic">p</span>) and MA(<span class="html-italic">q</span>) in natural gas production and consumption.</p> "> Figure 4
<p>Cross-correlation function with exogenous variables.</p> "> Figure 5
<p>Diagnostic checking of the standardized residuals, histogram, normal Q-Q, and correlogram plots of the SARIMAX (right side) and SARIMA (left side) model for natural gas production.</p> "> Figure 6
<p>Diagnostic checking of the standardized residuals, histogram, normal Q-Q, and correlogram plots of the SARIMAX (right side) and SARIMA (left side) model for natural gas consumption.</p> "> Figure 7
<p>Forecast visualization of natural gas production and consumption with SARIMAX and SARIMA models with selected exogenous factors for the test set.</p> "> Figure 7 Cont.
<p>Forecast visualization of natural gas production and consumption with SARIMAX and SARIMA models with selected exogenous factors for the test set.</p> "> Figure 8
<p>Graph of the United States monthly natural gas production and consumption until 2025.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Measurement
2.2. Methods for Time Series Analysis
2.2.1. ARIMA and ARIMAX Methods
2.2.2. SARIMA Models
- AR: ,
- MA: ,
- SAR: ,
- SMA: .
2.2.3. Seasonal ARIMA with eXogenous Factors (SARIMAX)
2.3. Analysis and Measures of Performance
3. Experimental Results and Discussion
3.1. The Findings of the ADF, KPSS, and PP Unit Root Tests
3.2. Correlation Coefficient Matrix
3.3. Application of SARIMA and SARIMAX Models on Natural Gas Production and Consumption
4. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, H.; Ma, X.; Azimi, M. US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model. Energy 2020, 194, 116905. [Google Scholar] [CrossRef]
- Deng, Q.; Alvarado, R.; Toledo, E.; Caraguay, L. Greenhouse gas emissions, non-renewable energy consumption, and output in South America: The role of the productive structure. Environ. Sci. Pollut. Res. 2020, 27, 14477–14491. [Google Scholar] [CrossRef]
- Sen, D.; Günay, M.E.; Tunç, K.M.M. Forecasting annual natural gas consumption using socio-economic indicators for making future policies. Energy 2019, 173, 1106–1118. [Google Scholar] [CrossRef]
- BP. Energy Outlook, 2020th ed.; Linda Capuano: EIA, Today in Energy; 20 April 2020. Available online: https://www.eia.gov/todayinenergy/detail.php?id=43395 (accessed on 15 July 2021).
- Deetman, S.; Hof, A.F.; Pfluger, B.; van Vuuren, D.P.; Girod, B.; van Ruijven, B.J. Deep greenhouse gas emission reductions in Europe: Exploring different options. Energy Policy 2013, 55, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Murshed, M.; Alam, R.; Ansarin, A. The environmental Kuznets curve hypothesis for Bangladesh: The importance of natural gas, liquefied petroleum gas, and hydropower consumption. Environ. Sci. Pollut. Res. 2021, 28, 17208–17227. [Google Scholar] [CrossRef] [PubMed]
- Riazi, M.R. Energy, economy, environment and sustainable development in the Middle East and North Africa. Int. J. Oil Gas Coal Technol. 2010, 3, 201–244. [Google Scholar] [CrossRef]
- Ravnik, J.; Hriberšek, M. A method for natural gas forecasting and preliminary allocation based on unique standard natural gas consumption profiles. Energy 2019, 180, 149–162. [Google Scholar] [CrossRef]
- Lakatos, I.; Julianna, L.S. Global oil demand and role of chemical EOR methods in the 21st century. Int. J. Oil Gas Coal Technol. 2008, 1, 46–64. [Google Scholar] [CrossRef]
- Es, H.A. Monthly natural gas demand forecasting by adjusted seasonal grey forecasting model. Energy Sources Part A Recover. Util. Environ. Eff. 2021, 43, 54–69. [Google Scholar] [CrossRef]
- Karakurt, I. Modelling and forecasting the oil consumptions of the BRICS-T countries. Energy 2021, 220, 119720. [Google Scholar] [CrossRef]
- Al-Fattah, S.M.; Aramco, S. Application of the artificial intelligence GANNATS model in forecasting crude oil demand for Saudi Arabia and China. J. Pet. Sci. Eng. 2021, 200, 108368. [Google Scholar] [CrossRef]
- British Petroleum (BP). BP Statistical Review of World Energy, 69th ed.; British Petroleum Co.: London, UK, 2020. [Google Scholar]
- Suganthi, L.; Samuel, A.A. Energy models for demand forecasting—A review. Renew. Sustain. Energy Rev. 2012, 16, 1223–1240. [Google Scholar] [CrossRef]
- Pi, D.; Liu, J.; Qin, X. A grey prediction approach to forecasting energy demand in China. Energy Sources Part A Recover. Util. Environ. Eff. 2010, 32, 1517–1528. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Wei, N.; Chen, X.; Xie, H.; Wang, J. Natural gas consumption forecasting: A discussion on forecasting history and future challenges. J. Nat. Gas Sci. Eng. 2021, 90, 103930. [Google Scholar] [CrossRef]
- Anđelković, A.S.; Bajatović, D. Integration of weather forecast and artificial intelligence for a short-term city-scale natural gas consumption prediction. J. Clean. Prod. 2020, 266, 122096. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, X.; Koch, T. Day-ahead high-resolution forecasting of natural gas demand and supply in Germany with a hybrid model. Appl. Energy 2020, 262, 114486. [Google Scholar] [CrossRef]
- Karadede, Y.; Ozdemir, G.; Aydemir, E. Breeder hybrid algorithm approach for natural gas demand forecasting model. Energy 2017, 141, 1269–1284. [Google Scholar] [CrossRef]
- Sánchez-Úbeda, E.F.; Berzosa, A. Modeling and forecasting industrial end-use natural gas consumption. Energy Econ. 2007, 29, 710–742. [Google Scholar] [CrossRef]
- Karabiber, O.A.; Xydis, G. Forecasting day-ahead natural gas demand in Denmark. J. Nat. Gas Sci. Eng. 2020, 76, 103193. [Google Scholar] [CrossRef]
- Khotanzad, A.; Elragal, H. Natural gas load forecasting with combination of adaptive neural networks. Proc. Int. Jt. Conf. Neural Netw. 1999, 6, 4069–4072. [Google Scholar] [CrossRef]
- Khotanzad, A.; Elragal, H.; Lu, T.L. Combination of artificial neural-network forecasters for prediction of natural gas consumption. IEEE Trans. Neural Netw. 2000, 11, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst. 2001, 16, 44–55. [Google Scholar] [CrossRef]
- Lu, H.; Cheng, F.; Ma, X.; Hu, G. Short-term prediction of building energy consumption employing an improved extreme gradient boosting model: A case study of an intake tower. Energy 2020, 203, 117756. [Google Scholar] [CrossRef]
- Soldo, B. Forecasting natural gas consumption. Appl. Energy 2012, 92, 26–37. [Google Scholar] [CrossRef]
- Lu, H.; Azimi, M.; Iseley, T. Short-term load forecasting of urban gas using a hybrid model based on improved fruit fly optimization algorithm and support vector machine. Energy Rep. 2019, 5, 666–677. [Google Scholar] [CrossRef]
- Kinateder, H.; Campbell, R.; Choudhury, T. Safe haven in GFC versus COVID-19: 100 turbulent days in the financial markets. Financ. Res. Lett. 2021, 101951, in press. [Google Scholar] [CrossRef]
- Qiao, W.; Yang, Z.; Kang, Z.; Pan, Z. Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm. Eng. Appl. Artif. Intell. 2020, 87, 103323. [Google Scholar] [CrossRef]
- Soldo, B.; Potočnik, P.; Šimunović, G.; Šarić, T.; Govekar, E. Improving the residential natural gas consumption forecasting models by using solar radiation. Energy Build. 2014, 69, 498–506. [Google Scholar] [CrossRef]
- Brabec, M.; Konár, O.; Pelikán, E.; Malý, M. A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers. Int. J. Forecast. 2008, 24, 659–678. [Google Scholar] [CrossRef]
- Taşpinar, F.; Çelebi, N.; Tutkun, N. Forecasting of daily natural gas consumption on regional basis in Turkey using various computational methods. Energy Build. 2013, 56, 23–31. [Google Scholar] [CrossRef]
- Hošovský, A.; Piteľ, J.; Adámek, M.; Mižáková, J.; Židek, K. Comparative study of week-ahead forecasting of daily gas consumption in buildings using regression ARMA/SARMA and genetic-algorithm-optimized regression wavelet neural network models. J. Build. Eng. 2021, 34, 101955. [Google Scholar] [CrossRef]
- Yucesan, M.; Pekel, E.; Celik, E.; Gul, M.; Serin, F. Forecasting daily natural gas consumption with regression, time series and machine learning based methods. Energy Sources Part A Recover. Util. Environ. Eff. 2021, 00, 1–16. [Google Scholar] [CrossRef]
- Zhou, H.; Su, G.; Li, G. Forecasting daily gas load with OIHF-Elman neural network. Procedia Comput. Sci. 2011, 5, 754–758. [Google Scholar] [CrossRef] [Green Version]
- Demirel, Ö.F.; Zaim, S.; Çališkan, A.; Özuyar, P. Forecasting natural gas consumption in Istanbul using neural networks and multivariate time series methods. Turkish J. Electr. Eng. Comput. Sci. 2012, 20, 695–711. [Google Scholar] [CrossRef]
- Wang, R.; Lu, S.; Feng, W. A novel improved model for building energy consumption prediction based on model integration. Appl. Energy 2020, 262, 114561. [Google Scholar] [CrossRef]
- Zhang, P.G. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Ediger, V.Ş.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35, 1701–1708. [Google Scholar] [CrossRef]
- Bierens, H.J. Armax model specification testing, with an application to unemployment in the Netherlands. J. Econom. 1987, 35, 161–190. [Google Scholar] [CrossRef]
- Jalalkamali, A.; Moradi, M.; Moradi, N. Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index. Int. J. Environ. Sci. Technol. 2015, 12, 1201–1210. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.; Jenkins, G.M.; MacGregor, J.F. Some recent advances in forecasting and control. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1974, 23, 158–179. [Google Scholar] [CrossRef]
- Cools, M.; Moons, E.; Wets, G. Investigating the variability in daily traffic counts through use of ARIMAX and SARIMAX models: Assessing the effect of holidays on two site locations. Transp. Res. Rec. 2009, 2136, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Hipel, K.W.; McLeod, A.I. Chapter 12 seasonal autoregressive integrated moving average models. Dev. Water Sci. 1994, 45, 419–462. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M. Some recent advances in forecasting and control. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1968, 17, 91–109. [Google Scholar] [CrossRef]
- Bartholomew, D.J. Review of Time Series Analysis Forecasting and Control., by G. E. P. Box & G. M. Jenkins. Oper. Res. Q. (1970–1977) 1971, 22, 199–201. [Google Scholar] [CrossRef]
- Nau, R. Mathematical structure of ARIMA models. Duke Univ. Online Artic. 2014, 1, 1–8. [Google Scholar]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Hamzaçebi, C. Improving artificial neural networks’ performance in seasonal time series forecasting. Inf. Sci. 2008, 178, 4550–4559. [Google Scholar] [CrossRef]
- Tarsitano, A.; Amerise, I.L. Short-term load forecasting using a two-stage sarimax model. Energy 2017, 133, 108–114. [Google Scholar] [CrossRef]
- Dutta, J.; Roy, S. IndoorSense: Context based indoor pollutant prediction using SARIMAX model. Multimed. Tools Appl. 2021, 80, 19989–20018. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, R.R.; Han, L.; Wang, H.; Zhang, X.; Tang, Q.L.; Yan, L.; He, J. Time series analysis of mumps and meteorological factors in Beijing, China. BMC Infect. Dis. 2019, 19, 1–10. [Google Scholar] [CrossRef]
- Duan, Y.; Huang, X.L.; Wang, Y.J.; Zhang, J.Q.; Zhang, Q.; Dang, Y.W.; Wang, J. Impact of meteorological changes on the incidence of scarlet fever in Hefei City, China. Int. J. Biometeorol. 2016, 60, 1543–1550. [Google Scholar] [CrossRef]
- Pepple, S.U.; Harrison, E.E. Comparative performance of Garch and Sarima techniques in the modeling of Nigerian board money. CARD Int. J. Soc. Sci. Confl. Manag. 2017, 2, 258–270. [Google Scholar]
- Armstrong, J.S.; Collopy, F. Error measures for generalizing about forecasting methods: Empirical comparisons. Int. J. Forecast. 1992, 8, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Pang, Y.; Cui, M.; Stallones, L.; Xiang, H. Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model. Ann. Epidemiol. 2015, 25, 101–106. [Google Scholar] [CrossRef]
- Elliott, G.; Rothenberg, T.; Stock, J. Efficient Tests for an Autoregressive Unit Root. Econometrica 1996, 64, 813–836. [Google Scholar] [CrossRef] [Green Version]
- Dickey, D.; Fuller, W. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econom. J. Econom. Soc. 1981, 49, 1057–1072. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series With a Unit Root. J. Am. Stat. Assoc. 1979, 74, 427. [Google Scholar] [CrossRef]
- Kwiatkowski, D.; Phillips, P.C.B.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root. How sure are we that economic time series have a unit root? J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Perron, P. Testing for a unit root in a time series with a changing mean. J. Bus. Econ. Stat. 1990, 8, 153–162. [Google Scholar] [CrossRef]
- Phillips, P.C.; Perron, P. Testing for a Unit Root in Time Series Regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Ozden, K.; Yilmaz, I. An Attempt at Pseudo-Democracy and Tactical Liberalization in Turkey: An Analysis of Ismet Inönü’s Decision to Transition to a Multi-Party Political System. Eur. J. Econ. Political Stud. 2010, 3, 189–205. [Google Scholar] [CrossRef]
- Hamzaçebi, C. Primary energy sources planning based on demand forecasting: The case of Turkey. J. Energy S. Afr. 2016, 27, 2–10. [Google Scholar] [CrossRef] [Green Version]
Metrics | N | Mean | Std. | Min. | Max. | Skew. | Kurt. | J–B Test | p-Values |
---|---|---|---|---|---|---|---|---|---|
Natural Gas Production | |||||||||
Market Prod. | 457 | 1832.86 | 435.047 | 1284.80 | 3232.45 | 1.488 | 1.464 | 206.811 | 0.0 ** |
NGPL | 457 | 95.536 | 41.620 | 59.96 | 240.70 | 1.921 | 2.813 | 425.434 | 0.0 ** |
Natural Gas Consumption | |||||||||
Total NGC | 457 | 1894.5 | 486.52 | 939.93 | 3417.27 | 0.538 | 0.014 | 21.97 | 0.000 *** |
Residential | 457 | 393.66 | 271.319 | 99.78 | 1037.19 | 0.565 | −1.11 | 48.0025 | 0.000 *** |
Commercial | 457 | 248.82 | 125.95 | 88.74 | 571.74 | 0.603 | −0.97 | 45.877 | 0.000 *** |
Industrial | 457 | 709.57 | 94.09 | 435.47 | 952.25 | −0.19 | 0.031 | 2.822 | 0.243 |
Transport | 457 | 56.53 | 14.63 | 36.30 | 109.53 | 0.957 | 0.522 | 74.20 | 0.000 *** |
Variable | ADF-Test | PP-Test | KPSS-Test | |||
---|---|---|---|---|---|---|
Level | 1st Order | Level | 1st Order | Level | 1st Order | |
Natural Gas Production | ||||||
Market Prod. | 0.7100 | −4.102 *** | 0.195 | −53.844 *** | 1.865 | 0.5488 * |
NGPL | 1.831 | −2.767 ** | 3.502 | −41.762 *** | 1.624 | 1.1038 * |
Natural Gas Consumption | ||||||
Total NGC | −0.020 | −7.638 *** | −5.700 | −13.675 *** | 2.083 | 0.076 ** |
Residential | −4.294 *** | −8.594 *** | −5.300 *** | −7.718 *** | 0.036 | 0.0451 ** |
Commercial | −2.350 | −8.050 *** | −5.305 | −7.743 *** | 0.892 | 0.042 ** |
Industrial | −1.366 | −5.915 *** | −3.971 | −27.580 *** | 0.875 | 0.087 ** |
Transport | −0.712 | −6.064 *** | −5.397 | −14.635 *** | 1.526 | 0.068 ** |
Natural Gas Production | |||||
---|---|---|---|---|---|
Variables | Marketed Production | NGPL | |||
Market Prod. | 1 | - | |||
NGPL | 0.979771 *** | 1 | |||
Natural Gas Consumption | |||||
Variables | Residential | Commercial | Industrial | Transportation | Total NGC |
Residential | 1 | - | - | - | - |
Commercial | 0.985891 *** | 1 | - | - | - |
Industrial | 0.459358 | 0.554703 | 1 | - | - |
Transportation | 0.701081 | 0.775182 | 0.764186 | 1 | - |
Total NGC | 0.756160 | 0.837779 | 0.776586 | 0.931583 *** | 1 |
Natural Gas Production | ||||||
---|---|---|---|---|---|---|
Training Set | Testing Set | |||||
Types of Model Parameter | Coefficient | SE | p-Values | Coefficient | SE | p-Values |
AR 1 | 0.4285 | 0.124 | 0.001 *** | - | ||
AR 2 | 0.0324 | 0.070 | 0.645 | - | ||
AR 3 | 0.0368 | 0.065 | 0.574 | - | ||
AR 4 | −0.1234 | 0.063 | 0.051 * | - | ||
MA 1 | −0.7296 | 0.130 | 0.000 *** | - | ||
Seasonal_AR 12 | 0.9877 | 0.004 | 0.000 *** | 0.1956 | 0.215 | 0.362 |
Seasonal_MA 12 | −0.6532 | 0.042 | 0.000 *** | −0.8358 | 0.272 | 0.002 *** |
Variance (σ2) | 1188.9158 | - | 0.000 *** | 1542.1716 | - | 0.000 *** |
Natural Gas Consumption | ||||||
AR 1 | 0.5507 | 0.045 | 0.000 *** | −0.4870 | 0.085 | 0.000 *** |
AR 2 | 0.0391 | 0.026 | 0.137 | −0.4283 | 0.086 | 0.000 *** |
MA 1 | −0.9944 | 0.009 | 0.000 *** | - | ||
Seasonal_AR 12 | 0.3323 | 0.051 | 0.000 *** | −0.6238 | 0.113 | 0.000 *** |
Seasonal_AR 24 | 0.1436 | 0.056 | 0.010 ** | −0.6585 | 0.108 | 0.000 *** |
Seasonal_AR 36 | 0.2527 | 0.047 | 0.000 *** | −0.5037 | 0.099 | 0.000 *** |
Seasonal_AR 48 | 0.1415 | 0.045 | 0.002 *** | - | ||
Seasonal_AR 60 | 0.1172 | 0.049 | 0.01 ** | - | ||
Variance (σ2) | 7394.2535 | - | 0.00 *** | 11030 | - | 0.000 *** |
Production | Consumption | Production | Consumption | |||
p-values of LB(Q)-test | 0.90 | 0.91 | 0.96 | 0.95 | ||
p-values of JB-test | 0.00 | 0.00 | 0.00 | 0.00 | ||
AIC | 3570.250 | 4254.634 | 901.540 | 1085.939 | ||
BIC | 3601.250 | 4289.509 | 908.938 | 1100.734 |
Natural Gas Production | ||||||
---|---|---|---|---|---|---|
Training Set | Testing Set | |||||
Types of Model Parameter | Coefficient | SE | p-Values | Coefficient | SE | p-Values |
NGPL Production | 20.8187 | 0.246 | 0.000 *** | 6.5562 | 0.465 | 0.000 *** |
AR 1 | 0.8427 | 0.055 | 0.000 *** | - | ||
AR 2 | 0.1232 | 0.051 | 0.01 ** | - | ||
Seasonal_AR 12 | 0.6602 | 0.304 | 0.030 ** | 0.9936 | 0.012 | 0.000 *** |
Seasonal_MA 12 | −0.9198 | 0.301 | 0.002 *** | −0.7599 | 0.200 | 0.000 *** |
Seasonal_MA 24 | 0.2087 | 0.076 | 0.006 *** | - | ||
Variance (σ2) | 557.2707 | - | 0.000 *** | 941.2649 | - | 0.000 *** |
Natural Gas Consumption | ||||||
Residential Sector | 0.7572 | 0.162 | 0.000 *** | 0.4840 | 0.330 | 0.143 |
Commercial Sector | 1.0017 | 0.375 | 0.008 *** | 1.5154 | 0.653 | 0.020 ** |
Industrial Sector | 1.0670 | 0.082 | 0.000 *** | 1.3183 | 0.471 | 0.005 *** |
Transportation Sector | 7.8810 | 0.490 | 0.000 *** | 6.7858 | 0.802 | 0.000 *** |
AR 1 | −0.1212 | 0.053 | 0.022 ** | - | ||
Seasonal_AR 12 | 0.9813 | 0.012 | 0.000 *** | - | ||
Seasonal_MA 12 | −0.6371 | 0.052 | 0.000 *** | −0.5583 | 0.122 | 0.000 *** |
Variance (σ2) | 1263.9703 | - | 0.000 *** | 1375.1277 | - | 0.000 *** |
Production | Consumption | Production | Consumption | |||
p-values of LB(Q)-test | 0.81 | 0.83 | 0.88 | 0.39 | ||
p-values of JB-test | 0.00 | 0.00 | 0.00 | 0.81 | ||
AIC | 3287.622 | 3591.060 | 995.453 | 892.047 | ||
BIC | 3314.766 | 3622.059 | 1005.834 | 906.842 |
Measure | Training Set (Production) | Test Set (Production) | Training Set (Consumption) | Test Set (Consumption) | ||||
---|---|---|---|---|---|---|---|---|
SARIMA | SARIMAX | SARIMA | SARIMAX | SARIMA | SARIMAX | SARIMA | SARIMAX | |
RMSE | 168.46 | 664.40 | 3106.47 | 184.53 | 131.73 | 254.76 | 1636.48 | 254.45 |
MAPE | 12.75 | 30.28 | 125.66 | 15.93 | 19.19 | 20.71 | 69.45 | 24.36 |
Authors | Models | Traning Set | Test Set | MAPE | Prediction For |
---|---|---|---|---|---|
Akkurt et.al (2010) | SARIMA | 1999–2007 | 2008 | 7.42 | Monthly natural gas |
Winters models | 7.83 | ||||
Hamzacebi (2016) | GM(1,1) | 1987–2009 | 2010–2014 | 8.39 | Monthly electricity demand |
SGM(1,1) | 5.18 | ||||
Es (2021) | ASGM(1,1) | 2000–2013 | 2014–2018 | 8.67 | Monthly natural gas demand |
SGM(1,1) | 10.70 | ||||
SARIMA | 17.99 | ||||
Yucesan et al. (2021) | NARX | 2017–2018 | 2019 | 5.346 | Daily NG consumption |
ARIMAX-ANN | 0.500 | ||||
SARIMAX-ANN | 0.357 | ||||
Research paper | SARIMAX (P) | 1983–2012 | 2013–2021 | 15.93 | Monthly NG production and consumption |
SARIMAX (C) | 1983–2012 | 2013–2021 | 24.36 |
The Monthly Wise Natural Gas Production Prediction of the US Until 2025 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Jan. | Feb. | Mar. | Apr. | May | Jun | July | Aug. | Sep. | Oct. | Nov. | Dec. |
2021 | - | 2889 | 3120 | 3017 | 3049 | 2980 | 3100 | 3120 | 3030 | 3129 | 3091 | 3177 |
2022 | 3172 | 2965 | 3200 | 3107 | 3154 | 3083 | 3199 | 3221 | 3135 | 3237 | 3194 | 3278 |
2023 | 3270 | 3064 | 3299 | 3206 | 3253 | 3182 | 3298 | 3320 | 3234 | 3336 | 3293 | 3377 |
2024 | 3369 | 3163 | 3398 | 3304 | 3351 | 3280 | 3397 | 3418 | 3332 | 3434 | 3391 | 3475 |
2025 | 3467 | 3261 | 3496 | 3402 | 3449 | 3379 | 3495 | 3516 | 3430 | 3532 | 3489 | 3573 |
The Monthly Wise Natural Gas Consumption Prediction of the US Until 2025 | ||||||||||||
2021 | - | 3046 | 2754 | 2334 | 2175 | 2232 | 2554 | 2475 | 2267 | 2402 | 2510 | 3159 |
2022 | 3279 | 3059 | 2795 | 2414 | 2270 | 2320 | 2610 | 2540 | 2351 | 2473 | 2572 | 3161 |
2023 | 3272 | 3072 | 2833 | 2487 | 2355 | 2399 | 2661 | 2598 | 2427 | 2538 | 2629 | 3163 |
2024 | 3266 | 3083 | 2867 | 2552 | 2432 | 2471 | 2707 | 2650 | 2496 | 2596 | 2681 | 3165 |
2025 | 3561 | 3094 | 2898 | 3612 | 2501 | 2535 | 2749 | 3698 | 2558 | 2649 | 2727 | 3467 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manigandan, P.; Alam, M.S.; Alharthi, M.; Khan, U.; Alagirisamy, K.; Pachiyappan, D.; Rehman, A. Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models. Energies 2021, 14, 6021. https://doi.org/10.3390/en14196021
Manigandan P, Alam MS, Alharthi M, Khan U, Alagirisamy K, Pachiyappan D, Rehman A. Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models. Energies. 2021; 14(19):6021. https://doi.org/10.3390/en14196021
Chicago/Turabian StyleManigandan, Palanisamy, MD Shabbir Alam, Majed Alharthi, Uzma Khan, Kuppusamy Alagirisamy, Duraisamy Pachiyappan, and Abdul Rehman. 2021. "Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models" Energies 14, no. 19: 6021. https://doi.org/10.3390/en14196021
APA StyleManigandan, P., Alam, M. S., Alharthi, M., Khan, U., Alagirisamy, K., Pachiyappan, D., & Rehman, A. (2021). Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models. Energies, 14(19), 6021. https://doi.org/10.3390/en14196021