Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries
<p>The elasticity coefficients of MDFs and its proportion: (<b>a</b>) The elasticity coefficients of MDFs; (<b>b</b>) The proportion of countries having the factor as one of their MDFs.</p> "> Figure 2
<p>The elasticity coefficiences of GDP per capita and its changes in different income groups: (<b>a</b>) The elasticity coefficiences of GDP per capita in three income groups; (<b>b</b>) The changes in GDP per capita in three income groups from 1990–2014.</p> "> Figure 3
<p>The elasticity coefficiences of energy intensity and its changes in different income groups: (<b>a</b>) The elasticity coefficiences of energy intensity in three income groups; (<b>b</b>) The changes in the energy intensity of three income groups from 1990–2014.</p> "> Figure 4
<p>The elasticity coefficiences of population and its changes in different income groups: (<b>a</b>) The elasticity coefficiences of the population in B&R countries; (<b>b</b>) The changes in the population of three income groups from 1990–2014.</p> "> Figure 5
<p>The elasticity coefficients of energy consumption and its changes in different income groups: (<b>a</b>) The elasticity coefficiences of energy consumption structure in B&R countries; (<b>b</b>) The changes in the energy consumption structure of three income groups from 1990–2014.</p> "> Figure 6
<p>Carbon emissions of 60 B&R countries under different SSPs. Plots are categorized by emission trajectories belonging under SSP1. The green, blue, and pink label on left of picture represent declining group, peak group, and in-creasing group, respectively.</p> "> Figure 7
<p>Peak emission and time for 60 B&R countries under (<b>a</b>) SSP1, (<b>b</b>) SSP2, (<b>c</b>) SSP3.</p> "> Figure 7 Cont.
<p>Peak emission and time for 60 B&R countries under (<b>a</b>) SSP1, (<b>b</b>) SSP2, (<b>c</b>) SSP3.</p> "> Figure 8
<p>The effects of MDFs in 60 B&R countries. The countries belonging to the decreasing group are marked with a green background, the peaking group is marked with a blue background, and the increasing group is marked with a pink background.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. STIRPAT Model
3.2. Predicting Scenarios
3.3. Data
4. Results
4.1. Main Driving Factors
4.1.1. The Influence of GDP per Capita
4.1.2. The Influence of Energy Intensity
4.1.3. The Influence of Population
4.1.4. The Influence of Energy Consumption Structure
4.2. Predicting Carbon Emission at the National Level
- (1)
- Declining group: This group is characterized by a gradual decline in carbon emissions from 2015–2050;
- (2)
- Peaking group: The carbon emissions of this group can peak before 2050;
- (3)
- Increasing group: The carbon emission will continue to grow from 2015–2050.
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
B&R | Belt and Road Initiative |
MDFs | Mmain driving factors |
STIRPAT | Stochastic Impacts by Regression on Population, Affluence, and Technology |
IPAT | Environment Impacts by Population, Affluence, and Technology |
SSPs | Shared Socioeconomic Pathways |
TP | Total population |
UR | Urbanization rate |
RG | GDP per capita |
ES | Energy consumption structure |
IS | Industry structure |
EI | Energy intensity |
RE | Renewable energy consumption |
TO | Trade openness |
HI | High income level |
UMI | Upper middle income |
LMI | Low middle income |
Appendix A
High income level countries(16 countries with per captia > US$ 122,76 in 2010 | Slovenia, Singapore, Saudi Arabia, Qatar, Kuwait, Israel, Brunei, Bahrain, United Arab Emirates, Czech Republic, Hungary, Oman, Poland, Slovakia, Estonia, Croatia, |
Upper middle income level groups(21 countries with per captia GNP between US$ 3976 and US$ 122,75 in 2010 | Lithuania, Latvia, Russia, Turkey, Malaysia, Kazakhstan, Lebanon, Romania, Bulgaria, Montenegro, Iran, Belarus, Azerbaijan, Serbia, Thailand, China, Bosnia and Herzegovina, Macedonia, Iraq, Turkmenistan, Albania |
low middle income level groups(23 countries with per captia < US$ 3975 in 2010 | Jordan, Armenia, Indonesia, Ukraine, Georgia, Sri Lanka, Mongolia, Egypt, Bhutan, Philippines, Moldova, Uzbekistan, India, Vietnam, Yemen, Laos, Pakistan, Myanmar, Kyrgyzstan, Cambodia, Bangladesh, Tajikistan, Nepal |
Countries | cons | lnTP | lnUR | lnRG | LnIS | lnEC | lnEI | lnRE | lnTO | R2 | Residual |
---|---|---|---|---|---|---|---|---|---|---|---|
Qatar | 10.158 *** | 0.607 *** | 0.018 * | 0.045 ** | 0.091 | 0.102 ** | 0.442 *** | −0.013 | 0.075 * | 0.989 | 0.0132 |
Singapore | 8.879 *** | 0.125 *** | 0.001 | 0.078 * | −0.203 * | 0.041 | 0.828 *** | 0.124 | −0.121 | 0.82 | 0.07197 |
Kuwait | −17.01 *** | −0.065 *** | 0.174 * | 1.143 *** | 0.085 | 0.025 | 1.218 *** | −0.148 * | 0.035 | 0.994 | 0.0225 |
Brunei | 14.164 *** | 0.257 *** | 0.003 | 0.674 *** | 0.323 | 0.022 | 1.409 *** | −0.184 | −0.017 | 0.933 | 0.1122 |
United Arab Emirates | 4.592 *** | 0.826 *** | −0.015 * | 0.006 ** | −0.091 | 1.021 *** | 0.025 * | −0.044 | 0.007 * | 0.937 | 0.17732 |
Israel | −11.11 *** | 0.64 *** | 0.211 ** | 1.176 *** | 0.018 *** | 0.026 | 1.263 *** | −0.031 | −0.013 * | 0.992 | 0.01939 |
Slovakia | 12.863 *** | −0.547 *** | 0.193 | −0.094 | 0.231 *** | 0.426 *** | 0.244 | −0.011 | −0.006 | 0.973 | 0.01538 |
Bahrain | −2.216 *** | 0.89 *** | 0.141 | 0.654 *** | - | 0.103 | 1.297 *** | −0.065 | −0.037 | 0.889 | 0.11917 |
Czech | 1.083 *** | −0.357 *** | 0.256 * | 0.724 *** | −0.043 | 0.498 ** | 1.168 *** | −0.105 * | 0.088 | 0.973 | 0.01783 |
Oman | −18.252 *** | 1.177 *** | −0.413 | 1.546 *** | 0.112 | −0.046 | 0.765 *** | —— | 0.132 | 0.966 | 0.1148 |
Saudi Arabia | −17.435 *** | 0.394 *** | −0.074 ** | 1.176 *** | 0.226 ** | −0.034 ** | 0.672 *** | 0.084 | 0.109 * | 0.967 | 0.09436 |
Slovenia | 10.829 *** | −1.501 *** | 0.085 | 0.721 *** | 0.034 | 0.378 *** | 1.18 *** | 0.054 | 0.362 | 0.887 | 0.0263 |
Estonia | −6.467 *** | 0.018 ** | −0.812 * | 1.048 *** | 0.029 | 0.114 | 1.195 *** | −0.232 * | −0.333 | 0.983 | 0.00362 |
Hungary | 2.563 *** | 0.084 | 0.179 | 0.013 *** | −0.015 *** | 0.951 *** | 1.332 *** | 0.026 * | 0.101 | 0.987 | 0.01687 |
Croatia | −6.036 *** | 0.018 * | 0.01 | 1.086 *** | 0.175 | 0.207 | 1.466 *** | −0.357 *** | 0.022 | 0.868 | 0.08974 |
Poland | −14.934 *** | 1.153 *** | −0.121 ** | 0.962 *** | −0.021 | 0.772 *** | 1.18 *** | −0.013 * | 0.014 | 0.995 | 0.00451 |
Lithuania | −12.62 *** | 0.947 *** | 0.084 | 0.818 *** | 0.34 | 1.044 ** | 1.073 *** | −0.618 ** | 0.927 | 0.967 | 0.01873 |
Latvia | −34.45 *** | 0.752 *** | 1.258 ** | 1.207 *** | −0.169 | 0.155 * | 1.379 *** | −0.534 *** | −0.017 | 0.99 | 0.01178 |
Russia | −16.176 *** | 1.052 *** | −0.098 *** | 1.083 *** | 0.032 | 0.474 * | 1.155 *** | −0.019 | −0.004 * | 0.995 | 0.00658 |
Azerbaijan | −5.849 *** | 0.657 *** | −0.498 | 0.967 *** | −0.046 * | 0.131 | 0.863 *** | 0.041 | 0.513 * | 0.98 | 0.07517 |
Turkey | −8.645 *** | 0.118 * | 0.951 *** | 1.016 *** | −0.006 | 0.432 *** | 0.94 *** | −0.023 | 0.103 | 0.999 | 0.00864 |
Malaysia | −4.812 *** | −0.221 *** | −0.076 ** | 0.875 *** | −0.055 | 0.319 *** | 0.353 *** | 0.022 | 0.108 | 0.993 | 0.05212 |
Kazakhstan | −6.586 *** | 1.178 *** | 0.035 | 0.405 *** | 0.561 *** | 0.488 * | 0.146 * | −0.398 *** | −0.051 | 0.979 | 0.04586 |
Lebanon | −12.394 *** | 0.917 *** | −0.014 | 0.611 *** | 0.11 | 0.512 *** | 0.645 *** | −0.078 | −0.096 | 0.951 | 0.06774 |
Romania | −12.389 *** | 0.813 *** | −0.166 ** | 0.535 *** | −0.016 | 0.923 *** | 1.018 *** | −0.063 * | 0.101 | 0.998 | 0.01045 |
Bulgaria | −7.909 *** | 0.071 | −0.067 * | 0.837 *** | 0.036 | 1.490 *** | 0.95 *** | −0.176 * | −0.062 | 0.959 | 0.032 |
Montenegro | −10.988 *** | 0.105 | 0.071 | 1.595 *** | 0.025 | —— | 0.905 *** | —— | −0.05 | 0.984 | 0.02048 |
Iran | −13.611 *** | 1.149 *** | 0.02 * | 0.398 *** | 0.034 | 0.107 | 0.427 *** | −0.017 * | −0.07 | 0.99 | 0.04029 |
Belarus | −2.443 *** | 0.093 ** | 0.031 * | 0.183 *** | 0.32 *** | 0.415 * | 0.97 *** | −0.183 * | −0.024 *** | 0.938 | 0.0313 |
Serbia | −3.471 *** | 0.121 * | 0.092 | 0.079 | −0.321 *** | 0.952 *** | 0.397 *** | −0.041 | 0.003 | 0.996 | 0.0068 |
Thailand | −3.919 *** | 0.03 ** | −0.642 *** | 1.681 *** | 0.003 | 1.032 *** | 0.057 ** | −0.068 ** | −0.02 ** | 0.997 | 0.0213 |
China | −2.277 *** | .066 * | −0.202 * | 1.190 *** | 0.596 ** | −0.108 | 1.121 *** | −0.379 *** | 0.121 * | 0.998 | 0.02014 |
Bosnia and Herzegovina | −5.905 *** | 0.029 | −0.085 * | 0.994 *** | −0.015 | 1.21 *** | 0.972 *** | −0.037 | 0.021 | 0.997 | 0.0213 |
Macedonia, FTR | −21.588 *** | 1.026 *** | 0.097 * | 0.697 *** | 0.05 | 0.184 * | 0.654 *** | 0.126 | 0.136 | 0.964 | 0.05432 |
Iraq | −6.248 *** | 0.664 *** | 0.032 | 0.34 *** | 0.089 | 0.104 | 0.883 ** | −0.062 | 0.026 * | 0.895 | 0.06551 |
Turkmenistan | −12.143 *** | 0.081 ** | 0.828 *** | 1.182 *** | −0.064 *** | 0.021 * | 0.815 *** | −0.024 * | 0.084 | 0.998 | 0.01199 |
Albania | −11.477 *** | 0.194 ** | −0.111 | 1.646 *** | 0.123 | 0.197 | 1.452 *** | −0.081 ** | 0.012 | 0.945 | 0.09761 |
Jordan | −7.321 *** | 0.809 *** | 0.034 * | 0.778 *** | 0.103 | 0.091 | 0.923 *** | −0.132 | 0.053 | 0.99 | 0.02983 |
Armenia | −3.602 *** | −0.297 * | −0.143 * | 0.751 *** | — | 0.787 *** | 0.842 *** | −0.167 | −0.125 | 0.97 | 0.05471 |
Indonesia | −13.251 *** | 1.085 *** | 0.213 ** | 0.805 *** | 0.049 | 0.011 | 0.175 *** | 0.149 | −0.014 | 0.949 | 0.09458 |
Ukraine | −25.384 *** | 1.041 *** | 0.469 * | 0.673 *** | −0.094 | 1.107 *** | 0.789 *** | −0.002 | 0.047 | 0.988 | 0.02896 |
Georgia | 0.633 *** | −0.275 | 0.236 | 0.922 *** | 0.396 | −0.464 | 0.615 *** | −0.36 *** | −0.011 | 0.955 | 0.0233 |
Sri Lanka | −61.542 *** | 1.04 *** | 0.147 | 0.43 | −0.046 | 0.458 *** | 0.723 *** | −0.206 ** | 0.012 | 0.99 | 0.04897 |
Mongolia | −16.658 *** | 1.75 *** | −0.495 * | 1.351 *** | 0.108 * | 0.196 * | 1.121 *** | −0.372 * | −0.150 * | 0.897 | 0.05987 |
Egypt | −9.978 *** | 1.08 *** | −0.616 ** | 0.952 *** | −0.318 * | −0.083 | 1.094 *** | −0.821 ** | 0.003 | 0.976 | 0.0596 |
Bhutan | −60.459 *** | 0.334 *** | 0.23 | 1.511 *** | 0.2 | — | 0.886 *** | −0.039 * | 0.172 | 0.98 | 0.07517 |
Philippines | −16.415 *** | 1.011 *** | −0.033 * | 1.386 *** | −0.098 | 0.719 *** | 1.136 *** | −0.451 ** | −0.032 | 0.99 | 0.02666 |
Moldova | −31.11 *** | 0.310 * | 0.169 * | 1.013 *** | −0.231 * | 0.884 *** | −0.08 *** | −0.103 | −0.31 | 0.951 | 0.03236 |
Uzbekistan | −13.889 *** | 0.943 *** | 0.199 * | 1.241 *** | 0.134 *** | 0.062 | 1.133 *** | 0.172 | 0.284 | 0.934 | 0.02114 |
India | −10.272 *** | 0.546 *** | 0.298 * | 1.126 *** | −0.005 * | 1.044 *** | 1.089 *** | −0.038 | 0.016 | 0.998 | 0.01731 |
Vietnam | −4.247 *** | 0.152 ** | 0.243 ** | 0.808 *** | 0.054 | 1.264 *** | 0.914 *** | −0.159 | −0.025 | 0.997 | 0.01433 |
Yemen | −13.511 *** | 1.086 *** | −0.087 * | 1.479 *** | 0.01 | −0.05 ** | 0.976 *** | −0.033 ** | −0.036 | 0.979 | 0.04076 |
Laos | −25.634 *** | 1.064 *** | 0.755 *** | 0.883 *** | 0.036 | —— | —— | 0.518 * | 0.115 | 0.98 | 0.01191 |
Pakistan | −17.179 *** | 1.041 *** | 0.518 * | 0.657 *** | −0.001 | −0.645 *** | 0.634 *** | −0.018 | 0.098 | 0.995 | 0.02122 |
Myanmar | −16.204 *** | 1.391 *** | 0.073 | 1.534 *** | −0.072 | 0.127 | 0.404 *** | −0.126 | 0.192 | 0.938 | 0.05651 |
Kyrgyzstan | −18.158 *** | 0.578 *** | −0.011 | 0.454 *** | −0.053 | 0.375 *** | 0.696 *** | −0.04 * | 0.023 | 0.988 | 0.03076 |
Cambodia | −10.642 *** | −0.003 ** | 0.021 ** | 1.508 *** | −0.036 | 1.015 | 0.739 *** | −0.135 | −0.063 | 0.995 | 0.03316 |
Bangladesh | −18.885 *** | 1.375 *** | 1.132 *** | 0.872 *** | −0.057 | 0.735 * | 0.389 *** | −0.28 ** | 0.098 | 0.998 | 0.02146 |
Tajikistan | −42.779 *** | 0.783 *** | 0.11 | 1.854 *** | 0.106 | −0.4 | 0.872 *** | 0.103 ** | −0.045 | 0.938 | 0.02081 |
Nepal | −8.037 *** | −0.153 * | −0.179 * | 1.868 *** | 0.106 | 0.783 *** | 0.043 * | −0.005 * | 0.185 *** | 0.986 | 0.01761 |
Median | 0.89 | 0.792 | 0.965 | 0.134 | 0.788 | 0.932 | −0.379 | 0.081 |
References
- World Bank Data Indicator (WDI). Available online: http://data.worldbank.org.cn (accessed on 1 January 2021).
- Zhang, Y.-J.; Jin, Y.-L.; Shen, B. Measuring the Energy Saving and CO2 Emissions Reduction Potential under China’s Belt and Road Initiative. Comput. Econ. 2018, 55, 1095–1116. [Google Scholar] [CrossRef]
- Belt and Road Portal. 2017. Available online: https://www.yidaiyilu.gov.cn/ (accessed on 2 February 2021).
- Belt and Road Portal. 2018. Available online: https://www.yidaiyilu.gov.cn/ (accessed on 2 February 2021).
- Fan, J.-L.; Da, Y.-B.; Wan, S.-L.; Zhang, M.; Cao, Z.; Wang, Y. Determinants of carbon emissions in ‘Belt and Road initiative’ countries: A production technology perspective. Appl. Energy 2019, 239, 268–279. [Google Scholar] [CrossRef]
- Climate Change 2014: Synthesis Report. Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (accessed on 2 February 2021).
- Climate Change 2018: Special Report on Global Warming of 1.5 °C. Available online: https://unfccc.int/topics/science/workstreams/cooperation-with-the-ipcc/ipcc-special-report-on-global-warming-of-15-degc (accessed on 2 February 2021).
- Ahmadi, M.H.; Ramezanizadeh, M.; Nazari, M.A.; Kheradmand, S.; Shamshirband, S. Carbon Dioxide Emission Prediction of Four CIS Countries by Applying a Correlation and GMDH Artificial Neural Network. Preprints 2019, 2019060227. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Saifoddin, A.; Shirmohammadi, R.; Aslani, A. Forecasting of CO2 emissions in Iran based on time series and regression analysis. Energy Rep. 2019, 5, 619–631. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Liu, D.; Fang, Z.; Xu, H. Modelling and forecasting CO2 emissions in the BRICS (Brazil, Russia, India, China, and South Africa) countries using a novel multi-variable grey model. Energy 2015, 79, 489–495. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Pisarenko, Z. Modeling carbon emission trajectory of China, US and India. J. Clean. Prod. 2020, 258, 120723. [Google Scholar] [CrossRef]
- Zhao, X.; Du, D. Forecasting carbon dioxide emissions. J. Environ. Manag. 2015, 160, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Tang, Y.; Zhang, Q.; Song, J.; Xu, A. Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces. Appl. Energy 2019, 255, 113852. [Google Scholar] [CrossRef]
- Zhou, N.; Price, L.; Yande, D.; Creyts, J.; Khanna, N.; Fridley, D.; Lu, H.; Feng, W.; Liu, X.; Hasanbeigi, A.; et al. A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030. Appl. Energy 2019, 239, 793–819. [Google Scholar] [CrossRef]
- Li, J.S.; Zhou, H.W.; Meng, J.; Yang, Q.; Chen, B.; Zhang, Y.Y. Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city. Appl. Energy 2018, 226, 1076–1086. [Google Scholar] [CrossRef]
- Chapman, A.; Fujii, H.; Managi, S. Key Drivers for Cooperation toward Sustainable Development and the Management of CO2 Emissions: Comparative Analysis of Six Northeast Asian Countries. Sustainability 2018, 10, 244. [Google Scholar] [CrossRef] [Green Version]
- de Alegría, I.M.; Basañez, A.; de Basurto, P.D.; Fernández-Sainz, A. Spain’s fulfillment of its Kyoto commitments and its funda-mental greenhouse gas (ghg) emission reduction drivers. Renew. Sustain. Energy Rev. 2016, 59, 858–867. [Google Scholar] [CrossRef]
- Li, M.Y.; Weng, Y.Y.; Duan, M.S. Emissions, energy and economic impacts of linking China’s national ETS with the EU ETS. Appl. Energy 2019, 235, 1235–1244. [Google Scholar] [CrossRef]
- Wang, C.H.; Chen, N.; Chan, S.L. A gravity model integrating high-speed rail and seismic-hazard mitigation through landuse planning: Application to California development. Habitat Int. 2017, 62, 51–61. [Google Scholar] [CrossRef]
- Xiao, B.; Niu, D.; Guo, X. The Driving Forces of Changes in CO2 Emissions in China: A Structural Decomposition Analysis. Energies 2016, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Feng, K.; Hubacek, K. Driving forces of CO2 emissions in the G20 countries: An index decomposition analysis from 1971 to 2010. Ecol. Inform. 2015, 26, 93–100. [Google Scholar] [CrossRef]
- Chong, C.H.; Tan, W.X.; Ting, Z.J.; Liu, P.; Ma, L.; Li, Z.; Ni, W. The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis. Renew. Sustain. Energy Rev. 2019, 115, 109356. [Google Scholar] [CrossRef]
- Jiang, X.; Guan, D. Determinants of global CO2 emissions growth. Appl. Energy 2016, 184, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Shuai, C.; Chen, X.; Wu, Y.; Tan, Y.; Zhang, Y.; Shen, L. Identifying the key impact factors of carbon emission in China: Results from a largely expanded pool of potential impact factors. J. Clean. Prod. 2018, 175, 612–623. [Google Scholar] [CrossRef]
- Brizga, J.; Feng, K.; Hubacek, K. Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010. Energy 2013, 59, 743–753. [Google Scholar] [CrossRef]
- Khan, A.Q.; Saleem, N.; Fatima, S.T. Financial development, income inequality, and CO2 emissions in Asian countries using STIRPAT model. Environ. Sci. Pollut. Res. 2018, 25, 6308–6319. [Google Scholar] [CrossRef] [PubMed]
- Ghazali, A.; Ali, G. Investigation of key contributors of CO2 emissions in extended STIRPAT model for newly industrialized countries: A dynamic common correlated estimator (DCCE) approach. Energy Rep. 2019, 5, 242–252. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S. The impacts of GDP, trade structure, exchange rate and FDI inflows on china’s carbon emissions. Energy Policy 2018, 120, 347–353. [Google Scholar] [CrossRef]
- Poumanyvong, P.; Kaneko, S. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecol. Econ. 2010, 70, 434–444. [Google Scholar] [CrossRef]
- Inmaculada, M.Z.; Antonello, M. The impact of urbanization on CO2 emissions: Evidence from developing countries. Ecol. Econ. 2011, 70, 1344–1353. [Google Scholar]
- Liu, D.; Xiao, B. Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model. Ecol. Indic. 2018, 93, 647–657. [Google Scholar] [CrossRef]
- Li, H.; Mu, H.; Zhang, M.; Li, N. Analysis on influence factors of China’s CO2 emissions based on Path–STIRPAT model. Energy Policy 2011, 39, 6906–6911. [Google Scholar] [CrossRef]
- Shafiei, S.; Salim, R.A. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A compar-ative analysis. Energy Policy 2014, 66, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Salim, R.; Rafiq, S.; Shafiei, S. Urbanization, Energy Consumption, and Pollutant Emission in Asian Developing Economies: An Empirical Analysis. Available online: http://hdl.handle.net/10419/163205 (accessed on 1 May 2021).
- Böhmelt, T. Employing the shared socioeconomic pathways to predict CO2 emissions. Environ. Sci. Policy 2017, 75, 56–64. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuurenb, D.P.; Krieglerc, E.; Edmondsd, J.; O’Neille, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2016, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Ebi, K.L.; Hallegatte, S.; Kram, T.; Arnell, N.W.; Carter, T.R.; Edmonds, J.; Kriegler, E.; Mathur, R.; O’Neill, B.C.; Riahi, K.; et al. A new scenario framework for climate change research: Background, process, and future directions. Clim. Chang. 2013, 122, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Kriegler, E.; O’Neill, B.C.; Hallegatte, S.; Kram, T.; Lempert, R.J.; Moss, R.; Wilbanks, T. The need for and use of socioeconomic scenarios for climate change analysis: A new approach based on shared socio-economic pathways. Glob. Environ. Chang. 2012, 22, 807–822. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Kristie, L.E.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Ruijven, B.J.; Levy, M.A.; Agrawal, A.; Biermann, F.; Birkmann, J.; Carter, T.R.; Ebi, K.L.; Garschagen, M.; Jones, B.; Jones, R.; et al. Enhancing the relevance of shared socioeconomic path-ways for climate change impacts, adaptation and vulnerability research. Clim. Chang. 2014, 122, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Marangoni, G.; Tavoni, M.; Bosetti, V.; Borgonovo, E.; Capros, P.; Fricko, O.; Gernaat, D.E.H.J.; Guivarch, C.; Havlik, P.; Huppmann, D.; et al. Sensitivity of projected long-term CO2 emissions across the Shared Socioeconomic Pathways. Nat. Clim. Chang. 2017, 7, 113–117. [Google Scholar] [CrossRef]
- Wei, Y.M.; Han, R.; Liang, Q.M.; Yu, B.Y.; Yao, Y.F.; Xue, M.M.; Zhang, K.; Liu, L.-J.; Peng, J.; Yang, P.; et al. An integrated assessment of INDCs under Shared Socioeco-nomic Pathways: An implementation of C3IAM. Nat. Hazards 2018, 92, 585–618. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, J.; Li, S.; Fang, C.; Feng, K. Socioeconomic driving forces and scenario simulation of CO2 emissions for a fast-developing region in China. J. Clean. Prod. 2019, 216, 217–229. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Zhang, X.; Yang, Y.; Su, Y.; Ye, Y.; Zhang, H. Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang. Renew. Sustain. Energy Rev. 2017, 67, 51–61. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, F.; Zhang, Y.; Zhang, X. An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China. Appl. Energy 2012, 100, 277–284. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, L.-C.; Wu, G.; Wei, Y.-M. Analyzing impact factors of CO2 emissions using the STIRPAT model. Environ. Impact Assess. Rev. 2006, 26, 377–395. [Google Scholar] [CrossRef]
- Nguyen, C.P.; Schinckus, C.; Su, T.D. Economic integration and CO2 emissions: Evidence from emerging economies. Clim. Dev. 2019, 12, 369–384. [Google Scholar] [CrossRef]
- Zhang, C.G.; Zhou, X. Does foreign direct investment lead to lower CO2 emissions? Evidence from a regional analysis in China. Renew Sustain. Energy Rev. 2016, 58, 943–951. [Google Scholar] [CrossRef]
- Roy, M.; Basu, S.; Pal, P. Examining the driving forces in moving toward a low carbon society: An extended STIRPAT analysis for a fast growing vast economy. Clean Technol. Environ. Policy 2017, 19, 2265–2276. [Google Scholar] [CrossRef]
- Sadorsky, P. The effect of urbanization on CO2 emissions in emerging economies. Energy Econ. 2014, 41, 147–153. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Rethinking the environmental impacts of population, affluence, and technology. Hum. Ecol. Rev. 1994, 1, 277–300. [Google Scholar]
- World Bank. Data. 2011. Available online: http://data.worldbank.org/indicator%3E (accessed on 2 February 2021).
- Fricko, O.; Havlik, P.; Rogelj, J.; Klimont, Z.; Gusti, M.; Johnson, N.; Kolp, P.; Strubegger, M.; Valin, H.; Amann, M.; et al. The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Glob. Environ. Chang. 2017, 42, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Samir, K.C.; Wolfgang, L. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Chang. 2017, 42, 181–192. [Google Scholar]
- Jesús, C.C. Income projections for climate change research: A framework based on human capital dynamics. Glob. Environ. Chang. 2017, 42, 226–236. [Google Scholar]
- Jiang, L.; O’Neill, B.C. Global urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ. Chang. 2017, 42, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Grossman, G.; Krueger, A. Environmental Impacts of a North American Free Trade Agreement. Natl. Bur. Econ. Res. 1991, 3914. [Google Scholar] [CrossRef]
- Shafik, N.; Bandyopadhyay, S. Economic Growth and Environmental Quality: Timeseries and Cross-Country Evidence; World Bank Publications: Washington, DC, USA, 1992. [Google Scholar]
- Le Quéré, C.; Korsbakken, J.I.; Wilson, C.; Tosun, J.; Andrew, R.; Andres, R.J.; Canadell, J.G.; Jordan, A.; Peters, G.P.; Van Vuuren, D.P. Drivers of declining CO2 emissions in 18 developed economies. Nat. Clim. Chang. 2019, 9, 213–217. [Google Scholar] [CrossRef] [Green Version]
Authors | Study Areas | Period | MDFs and Result | |
---|---|---|---|---|
Population, Affluence, Technology Variables | Extend Variables | |||
Li et al. (2011) [31] | China | 1991–2009 | Population (+), GDP per capita (+), Technology level (−) | Industrial structure (+), Urbanization (+) |
Shafiei and Salim (2014) [32] | OECD countries | 1980–2011 | Population (+), GDP per capita (+), Energy intensity (+) | Renewable energy consumption (−), Non-renewable energy consumption (+), Urbanization (+ invert-U shaped) |
Shuai (2018) [24] | China | 1996–2015 | Total Population (×), GDP per capita (+), Energy intensity (×) | Industry value added (+), Fixed assets investment (−), Urbanization (−), Renewable energy (−) |
Salim et al. (2017) [33] | 13 Asia countries | 1980–2010 | Population (+), GDP per capita (+), Non-renewable Energy Consumption (+) | Urbanization (−), Renewable energy (−), Trade liberalization (−) |
Ghazali and Ali (2019) [27] | 10 newly industrialized countries | 1991–2013 | Total Population (+), GDP per capita (+), Carbon intensity (+) | Energy mix (+), Trade openness (−) |
Wang et al. (2017) [43] | China (Xinjiang) | 1952–2012 | Population (+), GDP per capita (+), Carbon intensity (−) | Industrialization (+), Tertiary industry proportion (−), Fixed assets investment (+), Trade openness (+), Energy consumption structure (+) |
Wang et al. (2012) [44] | China(Beijing) | 1997–2010 | Population (#), GDP per capita (+), Energy intensity (−) | Urbanization (+), Industry proportion (+), Tertiary industry proportion (−), R&D output (−) |
Wang et al. (2019) [45] | China (Guangdong) | 1995–2014 | Population (+), GDP per capita (+), Energy intensity (−) | Industrialization level (+), Fixed assets investment (−), Energy consumption structure (+) |
Fan et al. (2006) [46] | 99 countries | 1975–2000 | Population (+ in HI,-in UMI), GDP per capita (+), Energy intensity (+ in HI, LMI and LI, -in UMI) | Urbanization (− in HI) |
Nguyen et al. (2019) [47] | 33 emerging economies | 1996–2014 | Population (#), GDP per capita (+), Energy intensity (+) | Urbanization (−), Trade openness (+ in short run, - in long run), Foreign direct investiment (+) |
Zhang and Zhou (2016) [48] | China | 1995–2010 | Population (+), GDP per capita (+), Energy intensity (−) | Urbanization (+), Industry structure (−), foreign direct investiment (−) |
Inmaculada et al. (2011) [30] | 93 developing countries | 1975–2003 | Population (+), GDP per capita (+), Energy Efficiency (−) | Urbanization (+I nverted-U shaped), Industrial Activity (+) |
Roy (2017) [49] | India | 1990–2016 | Population (+), GDP per capita (+), Carbon intensity (−) | Energy demand (−), energy mix (+), fossil fuel energy intensity (+) |
Poumanyvong and Kaneko (2010) [29] | 99 countries | 1975–2005 | Population (+), GDP per capita (+), Energy intensity (−) | Urbanization (+), Share of industry in GDP (+ in HI), Share of services in GDP (×) |
Sadorsky (2014) [50] | 16emerging countries | 1971–2009 | Population (+), GDP per capita (+), Energy intensity (+) | Urbanization (×) |
Variable | Short Name | Description | Unit |
---|---|---|---|
C | Carbon emissions | Carbon emissions from energy-relate | Kt |
TP | Population | total population | thousand people |
UR | Urbanization | The ratio of urban population in total population | % |
RG | GDP per capita | Real GDP per capita | constant 2011 USD |
ES | Energy consumption structure | The ratio of fossil energy in total energy consumption | % |
IS | Industry structure | The industrial value-added over the total GDP | constant 2011 US (% of GDP) |
EI | Energy intensity | Energy consumption per GDP | kg of oil equivalent per constant 2011 PPP$ |
RE | Renewable energy consumption | The ratio of renewable energy in total energy consumption | % |
TO | Trade openness | The ratio of trade (exports and imports) in GDP | % of GDP |
Scenario | Mitigation Challenges | Adaptation Challenges | Population Growth | GDP per Capita | Urbanization | Industry Structure | Energy Consumption Structure | Energy Intensity | Trade Openness | Renewable Energy |
---|---|---|---|---|---|---|---|---|---|---|
SSP1 | Low | Low | Low | High | High | High | Low | Low | High | High |
SSP2 | Medium | Medium | Medium | Medium | Medium | Medium | Medium | Medium | Medium | Medium |
SSP3 | High | High | High | Low | Low | Low | High | High | Low | Low |
Scenarios | Aggregated Carbon Emissions/Gt | |||
---|---|---|---|---|
2020 | 2030 | 2040 | 2050 | |
SSP1 | 21.43 | 21.97 | 21.22 | 19.72 |
SSP2 | 22.41 | 24.52 | 25.27 | 25.35 |
SSP3 | 23.43 | 27.88 | 30.64 | 33.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Cui, H.; Ge, Q. Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries. Energies 2021, 14, 5455. https://doi.org/10.3390/en14175455
Sun L, Cui H, Ge Q. Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries. Energies. 2021; 14(17):5455. https://doi.org/10.3390/en14175455
Chicago/Turabian StyleSun, Lili, Huijuan Cui, and Quansheng Ge. 2021. "Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries" Energies 14, no. 17: 5455. https://doi.org/10.3390/en14175455
APA StyleSun, L., Cui, H., & Ge, Q. (2021). Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries. Energies, 14(17), 5455. https://doi.org/10.3390/en14175455