Optimal Control of Time-Delay Fractional Equations via a Joint Application of Radial Basis Functions and Collocation Method
<p>Evaluated function <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for the problem expressed in Equation (<a href="#FD19-entropy-22-01213" class="html-disp-formula">19</a>).</p> "> Figure 2
<p>Evaluated function <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for the problem expressed in Equation (<a href="#FD19-entropy-22-01213" class="html-disp-formula">19</a>).</p> "> Figure 3
<p>Evaluated function <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for the problem expressed in Equation (<a href="#FD20-entropy-22-01213" class="html-disp-formula">20</a>).</p> "> Figure 4
<p>Evaluated function <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for the problem expressed in Equation (<a href="#FD20-entropy-22-01213" class="html-disp-formula">20</a>).</p> "> Figure 5
<p>Evaluated function <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for the problem expressed in Equation (<a href="#FD21-entropy-22-01213" class="html-disp-formula">21</a>).</p> "> Figure 6
<p>Evaluated function <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for the problem expressed in Equation (<a href="#FD21-entropy-22-01213" class="html-disp-formula">21</a>).</p> "> Figure 7
<p>Evaluated function <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for the problem expressed in Equation (<a href="#FD22-entropy-22-01213" class="html-disp-formula">22</a>).</p> "> Figure 8
<p>Evaluated function <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for problem expressed in Equation (<a href="#FD22-entropy-22-01213" class="html-disp-formula">22</a>).</p> ">
Abstract
:1. Introduction
2. Statement of the Problem
3. Method of Solution
3.1. RBF Definition and Collocation Method
- -
- Piecewise Smooth:
- •
- , Cubic RBF;
- •
- , Quintic RBF;
- •
- , Thin Plate spline (TPS) RBF;
- •
- , Wendland functions where p is a polynomial.
- -
- Infinitely Smooth:
- •
- , Multiquadric (MQ) RBF;
- •
- , Inverse Quadratic (IQ) RBF.
- •
- , Gaussian RBF.
3.2. Application of RBF Collocation Method
4. Numerical Implementation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Magin, R.L.; Abdullah, O.; Baleanu, D.; Zhou, X.J. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 2008, 190, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Klages, R.; Radons, G.; Sokolov, I.M. Anomalous Transport; Wiley: Berlin, Germany, 2008. [Google Scholar]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Diethelm, K.; Freed, A.D. On the solution of nonlinear fractional differential equations used in the modeling of viscoplasticity. In Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties; Springer: Berlin/Heidelberg, Germany, 1999; pp. 217–224. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Raberto, M.; Scalas, E.; Mainardi, F. Waitingtimes and returns in high-frequency financial data: An empirical study. Physics A 2002, 314, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Zamani, M.; Karimi-Ghartemani, M.; Sadati, N. FOPID controller design for robust performance using particle swarm optimization. J. Frac. Calc. Appl. Anal. 2007, 10, 169–188. [Google Scholar]
- Bohannan, G.W. Analog fractional order controller in temperature and motor control applications. J. Vib. Control 2008, 14, 1487–1498. [Google Scholar] [CrossRef]
- Jesus, I.S.; Machado, J.A.T. Fractional control of heat diffusion systems. Nonlinear Dyn. 2008, 54, 263–282. [Google Scholar] [CrossRef] [Green Version]
- Toledo-Hernez, R.; Rico-Ramirez, V.; Rico-Martinez, R.; Hernez-Castro, S.; Diwekar, U.M. A fractional calculus approach to the dynamic optimization of biological reactive systems. Part II: Numerical solution of fractional optimal control problems. Chem. Eng. Sci. 2014, 117, 239–247. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Youssri, Y.H. Spectral tau algorithm for certain coupled system of fractional differential equations via generalized Fibonacci polynomial sequence. Iran. J. Sci. Technol. Trans. Sci. 2019, 43, 543–554. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Zhao, J. Error analysis of the Legendre-Gauss collocation methods for the nonlinear distributed-order fractional differential equation. Appl. Numer. Math. 2019, 142, 122–138. [Google Scholar] [CrossRef]
- Mohammadi, F.; Cattani, C. A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations. J. Comput. Appl. Math. 2018, 339, 306–316. [Google Scholar] [CrossRef]
- Soradi-Zeid, S. Efficient radial basis functions approaches for solving a class of fractional optimal control problems. Comput. Appl. Math. 2020, 39, 20. [Google Scholar] [CrossRef]
- Youssri, Y.H.; Abd-Elhameed, W.M. Spectral tau algorithm for solving a class of fractional optimal control problems via Jacobi polynomials. Int. J. Optim. Control. Theor. Appl. 2018, 8, 152–160. [Google Scholar]
- Zeid, S.S. Approximation methods for solving fractional equations. Chaos Solitons Fractals 2019, 125, 171–193. [Google Scholar] [CrossRef]
- Zeid, S.S.; Effati, S.; Kamyad, A.V. Approximation methods for solving fractional optimal control problems. Comp. Appl. Math. 2017, 37, 158–182. [Google Scholar] [CrossRef]
- Ghassabzadeh, F.A.; Soradi-Zeid, S. Numerical Method for Approximate Solutions of Fractional Differential Equations with Time-Delay. Int. J. Ind. Electron. Control. Optim. 2020, 3, 127–136. [Google Scholar]
- Rahimkhani, P.; Ordokhani, Y.; Babolian, E. Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations. Numer. Algorithms 2018, 77, 1283–1305. [Google Scholar] [CrossRef]
- Chen, Z.; Gou, Q. Piecewise Picard iteration method for solving nonlinear fractional differential equation with proportional delays. Appl. Math. Comput. 2019, 348, 465–478. [Google Scholar] [CrossRef]
- Rahimkhani, P.; Ordokhani, Y. Numerical studies for fractional pantograph differential equations based on piecewise fractional-order Taylor function approximations. Iran. J. Sci. Technol. Trans. Sci. 2018, 42, 2131–2144. [Google Scholar] [CrossRef]
- Tian, Y.; Yu, T.; He, G.T.; Zhong, L.F.; Stanley, H.E. The resonance behavior in the fractional harmonic oscillator with time delay and fluctuating mass. Phys. Stat. Mech. Appl. 2020, 545, 123731. [Google Scholar] [CrossRef]
- Wahi, P.; Chatterjee, A. Averaging oscillations with small fractional damping and delayed terms. Nonlinear Dyn. 2004, 38, 3–22. [Google Scholar] [CrossRef]
- Zafar, A.A.; Kudra, G.; Awrejcewicz, J.; Abdeljawad, T.; Riaz, M.B. A comparative study of the fractional oscillators. Alex. Eng. J. 2020. [Google Scholar] [CrossRef]
- Safaie, E.; Farahi, M.H.; Farmani, A.M. An approximate method for numerically solving multidimensional delay fractional optimal control problems by Bernstein polynomials. Comput. Appl. Math. 2014, 34, 831–846. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Ezz-Eldien, S.S. A new Legendre operational technique for delay fractional optimal control problems. Calcolo 2016, 53, 521–543. [Google Scholar] [CrossRef]
- Moradi, L.; Mohammadi, F.; Baleanu, D. A direct numerical solution of time-delay fractional optimal control problems by using Chelyshov wavelets. J. Vib. Control 2018, 25, 310–324. [Google Scholar] [CrossRef]
- Rahimkhani, P.; Ordokhani, Y.; Babolian, E. An efficient approximate method for solving delay fractional optimal control problems. Nonlinear Dyn. 2016, 86, 1649–1661. [Google Scholar] [CrossRef]
- Rabiei, K.; Ordokhani, Y.; Babolian, E. Fractional-order Boubaker functions and their applications in solving delay fractional optimal control problems. J. Vib. Control 2017, 24, 3370–3383. [Google Scholar] [CrossRef]
- Dehghan, R.; Keyanpour, M. A numerical approximation for delay fractional optimal control problems based on the method of moments. IMA J. Math. Control Inf. 2015, 34, 77–92. [Google Scholar] [CrossRef]
- Ziaei, E.; Farahi, M.H. The approximate solution of non-linear time-delay fractional optimal control problems by embedding process. IMA J. Math. Control Inf. 2018, 36, 713–727. [Google Scholar] [CrossRef]
- Soradi-Zeid, S. Solving a class of fractional optimal control problems via a new efficient and accurate method. Comput. Methods Differ. Equ. 2020. [Google Scholar] [CrossRef]
- Yong, E.M.; Chen, L.; Tang, G.J. A survey of numerical methods for trajectory optimization of spacecraft. J. Astronaut. 2008, 29, 397–406. [Google Scholar]
- Mirinejad, H.; Inanc, T. An RBF collocation method for solving optimal control problems. Robot. Auton. Syst. 2017, 87, 219–225. [Google Scholar] [CrossRef]
- Schaback, R. MATLAB Programming for Kernel-Based Methods; Lecture Note: Göttingen, Germany, 2011. [Google Scholar]
- Mohammadi, M.; Schaback, R. On the fractional derivatives of radial basis functions. arXiv 2016, arXiv:1612.07563. [Google Scholar]
- Andrei, N. A SQP algorithm for large-scale constrained optimization: SNOPT. In Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology; Springer: Cham, Switzerland, 2017; pp. 317–330. [Google Scholar]
- Moradi, L.; Mohammadi, F. A Comparative Approach for Time-Delay Fractional Optimal Control Problems: Discrete Versus Continuous Chebyshev Polynomials. Asian J. Control 2020, 22, 204–216. [Google Scholar] [CrossRef]
- Hosseinpour, S.; Nazemi, A.; Tohidi, E. Müntz-Legendre spectral collocation method for solving delay fractional optimal control problems. J. Comput. Appl. Math. 2018, 351, 344–363. [Google Scholar] [CrossRef]
- Ghomanjani, F.; Farahi, M.H.; Gachpazan, M. Optimal control of time-varying linear delay systems based on the Bezier curves. Comput. Appl. Math. 2013, 33, 687–715. [Google Scholar] [CrossRef]
- Haddadi, N.; Ordokhani, Y.; Razzaghi, M. Optimal control of delay systems by using a hybrid functions approximation. J. Optim. Theory Appl. 2012, 153, 338–356. [Google Scholar] [CrossRef]
- Sabermahani, S.; Ordokhani, Y.; Yousefi, S.A. Fractional-order Lagrange polynomials: An application for solving delay fractional optimal control problems. Trans. Inst. Meas. Control 2019, 41, 2997–3009. [Google Scholar] [CrossRef]
- Wang, X.T. Numerical solutions of optimal control for time delay systems by hybrid of block-pulse functions and Legendre polynomials. Appl. Math. Comput. 2007, 184, 849–856. [Google Scholar] [CrossRef]
- Banks, H.T.; Burns, J.A. Hereditary control problems: Numerical methods based on averaging approximations. SIAM J. Control Optim. 1978, 16, 169–208. [Google Scholar] [CrossRef]
- Rao, G.P.; Palanisamy, K.R. Improved algorithms for parameter identification in continuous systems via Walsh functions. In IET Proceedings D-Control Theory and Applications; IET Digital Library: Hong Kong, China, 1983; Volume 130, pp. 9–16. [Google Scholar]
- Dadebo, S.; Luus, R. Optimal control of time-delay systems by dynamic programming. Optim. Control Methods 1992, 13, 29–41. [Google Scholar] [CrossRef]
- Chen, C.L.; Sun, D.Y.; Chang, C.Y. Numerical solution of time-delayed optimal control problems by iterative dynamic programming. Optim. Control Appl. Methods 2000, 21, 91–105. [Google Scholar] [CrossRef]
- Marzban, H.R.; Razzaghi, M. Optimal control of linear delay systems via hybrid of block-pulse and Legendre polynomials. J. Frankl. Inst. 2004, 341, 279–293. [Google Scholar] [CrossRef]
- Basin, M.; Rodriguez-Gonzalez, J. Optimal control for linear systems with multiple time delays in control input. IEEE Trans. Autom. Control 2006, 51, 91–97. [Google Scholar] [CrossRef]
- Khellat, F. Optimal control of linear time-delayed systems by linear Legendre multi-wavelets. J. Optim. Theory Appl. 2009, 143, 107–121. [Google Scholar] [CrossRef]
- Safaie, E.; Farahi, M.H. An approximation method for numerical solution of multi-dimensional feedback delay fractional optimal control problems by Bernstein polynomials. Iran. J. Numer. Anal. Optim. 2014, 4, 77–94. [Google Scholar]
- Jajarmi, A.; Baleanu, D. Suboptimal control of fractional-order dynamic systems with delay argument. J. Vib. Control 2017. [Google Scholar] [CrossRef]
- Jajarmi, A.; Hajipour, M. An efficient finite difference method for the time-delay optimal control problems with time-varying delay. Asian J. Control 2017, 19, 554–563. [Google Scholar] [CrossRef]
Bhrawy | Moradi | Rahimkhani | Ghomanjani | Tohidi | This Study | |||
---|---|---|---|---|---|---|---|---|
[26] | [38] | [28] | [40] | [39] | ||||
J | ||||||||
CPU Time (s) | – | 3.265 | – | – | 4.358 | – | – | 2.02481 |
This Study | Haddadi [41] | Moradi [27] | Ordokhani [42] | Rahimkhani [28] | Tohidi [39] | Ghomanjani [40] | Rabiei [29] | |
---|---|---|---|---|---|---|---|---|
J | ||||||||
CPU Time (s) | 0.09601 | – | 3.125 | 0.141 | – | 25.559 | – | – |
N | ||||
---|---|---|---|---|
5 | ||||
10 | ||||
15 | ||||
20 |
Haddadi | Rahimkhani | Rabiei | Ordokhani | Moradi | This Study | |||
---|---|---|---|---|---|---|---|---|
[41] | [28] | [29] | [42] | [27] | ||||
J | ||||||||
CPU Time (s) | – | – | – | 0.094 | 3.640 | – | – | 0.06737 |
N | |||
---|---|---|---|
5 | |||
10 | |||
15 | |||
20 |
Approximate Method | Example 1 | Example 2 | Example 3 | Example 4 | Example 5 |
---|---|---|---|---|---|
Banks and Burns (1978) [44] | |||||
Palanisamy and Rao (1983) [45] | |||||
Dadebo and Luus (1992) [46] | |||||
Chen et al. (2000) [47] | |||||
Marzban and Razzaghi (2004) [48] | |||||
Basin and Gonzalez (2006) [49] | |||||
Wang (2007) [43] | |||||
Khellat (2009) [50] | |||||
Haddadi et al. (2012) [41] | |||||
Ghomanjani et al. (2014) [40] | |||||
Safaie et al. (2014) [25] | |||||
Safaie et al. (2014) [51] | |||||
Bhrawy and Ezz-Eldien (2016) [26] | |||||
Rahimkhani et al. (2016) [28] | |||||
Jajarmi et al. (2017) [52,53] | |||||
Rabiei et al. (2017) [29] | |||||
Moradi et al. (2018) [27] | |||||
Tohidi et al. (2019) [39] | |||||
Present method |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-B.; Soradi-Zeid, S.; Jahanshahi, H.; Alcaraz, R.; Gómez-Aguilar, J.F.; Bekiros, S.; Chu, Y.-M. Optimal Control of Time-Delay Fractional Equations via a Joint Application of Radial Basis Functions and Collocation Method. Entropy 2020, 22, 1213. https://doi.org/10.3390/e22111213
Chen S-B, Soradi-Zeid S, Jahanshahi H, Alcaraz R, Gómez-Aguilar JF, Bekiros S, Chu Y-M. Optimal Control of Time-Delay Fractional Equations via a Joint Application of Radial Basis Functions and Collocation Method. Entropy. 2020; 22(11):1213. https://doi.org/10.3390/e22111213
Chicago/Turabian StyleChen, Shu-Bo, Samaneh Soradi-Zeid, Hadi Jahanshahi, Raúl Alcaraz, José Francisco Gómez-Aguilar, Stelios Bekiros, and Yu-Ming Chu. 2020. "Optimal Control of Time-Delay Fractional Equations via a Joint Application of Radial Basis Functions and Collocation Method" Entropy 22, no. 11: 1213. https://doi.org/10.3390/e22111213
APA StyleChen, S. -B., Soradi-Zeid, S., Jahanshahi, H., Alcaraz, R., Gómez-Aguilar, J. F., Bekiros, S., & Chu, Y. -M. (2020). Optimal Control of Time-Delay Fractional Equations via a Joint Application of Radial Basis Functions and Collocation Method. Entropy, 22(11), 1213. https://doi.org/10.3390/e22111213