Preparation and Rheological Evaluation of Thiol–Maleimide/Thiol–Thiol Double Self-Crosslinking Hyaluronic Acid-Based Hydrogels as Dermal Fillers for Aesthetic Medicine
"> Figure 1
<p>1H NMR (<b>A</b>) and FTIR spectra (<b>B</b>) of HA and HA-Mal with three different degrees of substitution of maleimide on HA (HM10, HM20, and HM30).</p> "> Figure 2
<p>Reaction scheme illustrating the formation of <span class="html-italic">dsc</span>HA hydrogels.</p> "> Figure 3
<p>SEM images of six <span class="html-italic">dsc</span>HA hydrogels (HM10-4SH10K (<b>A</b>), HM20-4SH10K (<b>B</b>), HM30-4SH10K (<b>C</b>), HM10-4SH20K (<b>D</b>), HM20-4SH20K (<b>E</b>), and HM30-4SH20K (<b>F</b>). (Scale bar: 500 µm).</p> "> Figure 4
<p>The swelling ratio profiles (<b>A</b>) and degradation profiles (<b>B</b>) for HAs with various levels of maleimide substitution and thiol-containing crosslinkers with two different MWs (designated as HM10-4SH10K, HM10-4SH20K, HM20-4SH10K, HM20-4SH20K, HM30-4SH10K, and HM30-4SH20K, respectively).</p> "> Figure 5
<p>Injection force through a 26 G needle measured for six <span class="html-italic">dsc</span>HA hydrogels (HM10-4SH10K, HM10-4SH20K, HM20-4SH10K, HM20-4SH20K, HM30-4SH10K, and HM30-4SH20K).</p> "> Figure 6
<p>Rheological evaluation of <span class="html-italic">dsc</span>HA hydrogels. Amplitude sweep (<b>A</b>) and frequency sweep (<b>B</b>) of the six <span class="html-italic">dsc</span>HA hydrogels, showing the linear viscoelastic (LVE) region and gel behavior. Tan δ values (<b>C</b>) of the six <span class="html-italic">dsc</span>HA hydrogels, indicating whether the behavior is elastic-dominant or viscous-dominant.</p> "> Figure 7
<p>Creep-recovery experiments (constant stress) were performed with an applied shear stress of 5 Pa for 10 min followed by 20 min of recovery (<b>A</b>), and alternate-step strain tests with five repetitions of shear-stress application and relaxation (<b>B</b>) were performed to study the deformation and recovery of the hydrogel network.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Synthesis of HA-Mal Conjugates
2.2. Preparation of dscHA Hydrogels
2.3. Physical Characterization of dscHA Hydrogels
2.3.1. Morphology
2.3.2. Swelling Ratio and Degradation Behavior of dscHA Hydrogels
2.3.3. Degradation Behavior of dscHA Hydrogels
2.3.4. Injection Force of dscHA Hydrogels
2.4. Rheology Study
2.4.1. Oscillatory Amplitude and Frequency Sweep (G′ and G″)
2.4.2. Creep Recovery and Alternate-Step Strain Test
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Materials
5.2. Synthesis of HA-Mal Conjugates
5.3. Preparation of dscHA Hydrogels
5.4. Physical and Rheological Characterization of dscHA Hydrogels
5.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bétemps, J.B.; Molliard, S.G.; Hadjab, B.; Badi, M.; Ghazal, A.; Cerrano, M. Study of biological markers in skin quality treatment by subcutaneous injection of a stabilized composition of 26 mg/mL of high molecular weight HA. Plast. Aesthetic Res. 2022, 9, 59. [Google Scholar] [CrossRef]
- Nakab, L.; Hee, C.K.; Guetta, O. Improvements in Skin Quality Biological Markers in Skin Explants Using Hyaluronic Acid Filler VYC-12L. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2723. [Google Scholar] [CrossRef]
- Kleine-Borger, L.; Meyer, R.; Kalies, A.; Kerscher, M. Approach to differentiate between hyaluronic acid skin quality boosters and fillers based on their physicochemical properties. J. Cosmet. Dermatol. 2022, 21, 149–157. [Google Scholar] [CrossRef]
- Paliwal, S.; Fagien, S.; Sun, X.; Holt, T.; Kim, T.; Hee, C.K.; Van Epps, D.; Messina, D.J. Skin extracellular matrix stimulation following injection of a hyaluronic acid-based dermal filler in a rat model. Plast. Reconstr. Surg. 2014, 134, 1224–1233. [Google Scholar] [CrossRef]
- Safa, M.; Natalizio, A.; Hee, C.K. A Prospective, Open-Label Study to Evaluate the Impact of VYC-12L Injection on Skin Quality Attributes in Healthy Volunteers. Clin. Cosmet. Investig. Dermatol. 2022, 15, 411–426. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Li, W.; Liu, L.; Wang, X.; Song, S. Nanoparticle-Containing Hyaluronate Solution for Improved Lubrication of Orthopedic Ceramics. Polymers 2022, 14, 3485. [Google Scholar] [CrossRef]
- Schanté, C.E.; Zuber, G.; Herlin, C.; Vandamme, T.F. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr. Polym. 2011, 85, 469–489. [Google Scholar] [CrossRef]
- Guarise, C.; Barbera, C.; Pavan, M.; Panfilo, S.; Beninatto, R.; Galesso, D. HA-based dermal filler: Downstream process comparison, impurity quantitation by validated HPLC-MS analysis, and in vivo residence time study. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800019867075. [Google Scholar] [CrossRef]
- Della Sala, F.; di Gennaro, M.; Makvandi, P.; Borzacchiello, A. A Covalently Cross-Linked Hyaluronic Acid/Carboxymethyl Cellulose Composite Hydrogel as a Potential Filler for Soft Tissue Augmentation. Gels 2024, 10, 67. [Google Scholar] [CrossRef]
- Hong, G.W.; Moon, H.J.; Lee, H.M.; Kim, D.K.; Lee, K.H. Deformation characteristics of hydrogel products based on cross-linked hyaluronic acid. J. Cosmet. Dermatol. 2023, 22, 3118–3124. [Google Scholar] [CrossRef]
- Gavard, M.S.; Bon, B.J.; Basste, H.; David, T.; Patrick, M.; Denis, S. Key rheological properties of hyaluronic acid fillers: From tissue integration to product degradation. Plast. Aesthetic Res. 2018, 5, 17. [Google Scholar] [CrossRef]
- Wongprasert, P.; Dreiss, C.A.; Murray, G. Evaluating hyaluronic acid dermal fillers: A critique of current characterization methods. Dermatol. Ther. 2022, 35, e15453. [Google Scholar] [CrossRef] [PubMed]
- Ilyin, S.O.; Kulichikhin, V.G.; Malkin, A.Y. The rheological characterisation of typical injection implants based on hyaluronic acid for contour correction. Rheol. Acta 2016, 55, 223–233. [Google Scholar] [CrossRef]
- Michaud, T. Rheology of hyaluronic acid and dynamic facial rejuvenation: Topographical specificities. J. Cosmet. Dermatol. 2018, 17, 736–743. [Google Scholar] [CrossRef]
- Michael, K.P.; Rona, Z.S. The interaction between hyaluronidase and hyaluronic acid gel fillers—A review of the literature and comparative analysis. Plast. Aesthetic Res. 2020, 7, 36. [Google Scholar]
- Sall, I.; Férard, G. Comparison of the sensitivity of 11 crosslinked hyaluronic acid gels to bovine testis hyaluronidase. Polym. Degrad. Stab. 2007, 92, 915–919. [Google Scholar] [CrossRef]
- Lan, S.M.; Jou, I.M.; Wu, P.T.; Wu, C.Y.; Chen, S.C. Investigation into the safety of perineural application of 1,4-butanediol diglycidyl ether-crosslinked hyaluronan in a rat model. J. Biomed Mater. Res. B Appl. Biomater. 2015, 103, 718–726. [Google Scholar] [CrossRef]
- La Gatta, A.; Aschettino, M.; Stellavato, A.; D’Agostino, A.; Vassallo, V.; Bedini, E.; Bellia, G.; Schiraldi, C. Hyaluronan Hydrogels for Injection in Superficial Dermal Layers: An In Vitro Characterization to Compare Performance and Unravel the Scientific Basis of Their Indication. Int. J. Mol. Sci. 2021, 22, 6005. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, W.; Wang, H.; Li, Q.; Wei, C.; Zhang, J.; Jin, P. Effect of a New Hyaluronic Acid Hydrogel Dermal Filler Cross-Linked With Lysine Amino Acid for Skin Augmentation and Rejuvenation. Aesthetic Surg. J. 2023, 44, NP87–NP97. [Google Scholar] [CrossRef]
- Han, S.-S.; Yoon, H.Y.; Yhee, J.Y.; Cho, M.O.; Shim, H.-E.; Jeong, J.-E.; Lee, D.-E.; Kim, K.; Guim, H.; Lee, J.H.; et al. In situ cross-linkable hyaluronic acid hydrogels using copper free click chemistry for cartilage tissue engineering. Polym. Chem. 2018, 9, 20–27. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, P.; Li, X.; Xu, Y.; Lu, G.; Jiang, Q.; Sun, Y.; Fan, Y.; Zhang, X. A di-self-crosslinking hyaluronan-based hydrogel combined with type I collagen to construct a biomimetic injectable cartilage-filling scaffold. Acta Biomater. 2020, 111, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Echalier, C.; Valot, L.; Martinez, J.; Mehdi, A.; Subra, G. Chemical cross-linking methods for cell encapsulation in hydrogels. Mater. Today Commun. 2019, 20, 100536. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Chen, J.; Deng, C.; Suuronen, E.J.; Zhong, Z.Y. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials 2014, 35, 4969–4985. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, M.V.; Debera, N.; Pereira, R.F.; Neves, M.I.; Barrias, C.C.; Bidarra, S.J. In situ crosslinkable multi-functional and cell-responsive alginate 3D matrix via thiol-maleimide click chemistry. Carbohydr. Polym. 2024, 337, 122144. [Google Scholar] [CrossRef]
- Maturavongsadit, P.; Bi, X.; Metavarayuth, K.; Luckanagul, J.A.; Wang, Q. Influence of Cross-Linkers on the in Vitro Chondrogenesis of Mesenchymal Stem Cells in Hyaluronic Acid Hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 3318–3329. [Google Scholar] [CrossRef]
- Neves, M.I.; Moroni, L.; Barrias, C.C. Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments. Front. Bioeng. Biotechnol. 2020, 8, 665. [Google Scholar] [CrossRef]
- Fu, H.; Yu, C.; Li, X.; Bao, H.; Zhang, B.; Chen, Z.; Zhang, Z. Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility. J. Mater. Chem. B 2021, 9, 10003–10014. [Google Scholar] [CrossRef]
- Summonte, S.; Racaniello, G.F.; Lopedota, A.; Denora, N.; Bernkop-Schnurch, A. Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. J. Control Release 2021, 330, 470–482. [Google Scholar] [CrossRef]
- Mazzocchi, A.; Yoo, K.M.; Nairon, K.G.; Kirk, L.M.; Rahbar, E.; Soker, S.; Skardal, A. Exploiting maleimide-functionalized hyaluronan hydrogels to test cellular responses to physical and biochemical stimuli. Biomed Mater. 2022, 17, 025001. [Google Scholar] [CrossRef]
- Chan, J.W.; Hoyle, C.E.; Lowe, A.B.; Bowman, M. Nucleophile-Initiated Thiol-Michael Reactions: Effect of Organocatalyst, Thiol, and Ene. Macromolecules 2010, 43, 6381–6388. [Google Scholar] [CrossRef]
- Han, C.; Zhang, H.; Wu, Y.; He, X.; Chen, X. Dual-crosslinked hyaluronan hydrogels with rapid gelation and high injectability for stem cell protection. Sci. Rep. 2020, 10, 14997. [Google Scholar] [CrossRef] [PubMed]
- Zerbinati, N.; Sommatis, S.; Maccario, C.; Capillo, M.C.; Grimaldi, G.; Alonci, G.; Protasoni, M.; Rauso, R.; Mocchi, R. Toward Physicochemical and Rheological Characterization of Different Injectable Hyaluronic Acid Dermal Fillers Cross-Linked with Polyethylene Glycol Diglycidyl Ether. Polymers 2021, 13, 948. [Google Scholar] [CrossRef] [PubMed]
- La Gatta, A.; Schiraldi, C.; Papa, A.; De Rosa, M. Comparative analysis of commercial dermal fillers based on crosslinked hyaluronan: Physical characterization and in vitro enzymatic degradation. Polym. Degrad. Stab. 2011, 96, 630–636. [Google Scholar] [CrossRef]
- Yang, R.; Tan, L.; Cen, L.; Zhang, Z. An injectable scaffold based on crosslinked hyaluronic acid gel for tissue regeneration. RSC Adv. 2016, 6, 16838–16850. [Google Scholar] [CrossRef]
- Hoti, G.; Caldera, F.; Cecone, C.; Pedrazzo, A.R.; Anceschi, A.; Appleton, S.L.; Monfared, Y.K.; Trotta, F. Effect of the Cross-Linking Density on the Swelling and Rheological Behavior of Ester-Bridged beta-Cyclodextrin Nanosponges. Materials 2021, 14, 478. [Google Scholar] [CrossRef]
- Edsman, K.L.M.; Ohrlund, A. Cohesion of Hyaluronic Acid Fillers: Correlation Between Cohesion and Other Physicochemical Properties. Dermatol. Surg. 2018, 44, 557–562. [Google Scholar] [CrossRef]
- Fagien, S.; Bertucci, V.; von Grote, E.; Mashburn, J.H. Rheologic and Physicochemical Properties Used to Differentiate Injectable Hyaluronic Acid Filler Products. Plast. Reconstr. Surg. 2019, 143, 707e–720e. [Google Scholar] [CrossRef]
- Kablik, J.; Monheit, G.D.; Yu, L.; Chang, G.; Gershkovich, J. Comparative physical properties of hyaluronic acid dermal fillers. Dermatol. Surg. 2009, 35 (Suppl. S1), 302–312. [Google Scholar] [CrossRef]
- La Gatta, A.; De Rosa, M.; Frezza, M.A.; Catalano, C.; Meloni, M.; Schiraldi, C. Biophysical and biological characterization of a new line of hyaluronan-based dermal fillers: A scientific rationale to specific clinical indications. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 68, 565–572. [Google Scholar] [CrossRef]
- Al-Sibani, M.; Al-Harrasi, A.; Neubert, R.H.H. Evaluation of in-vitro degradation rate of hyaluronic acid-based hydrogel cross-linked with 1, 4-butanediol diglycidyl ether (BDDE) using RP-HPLC and UV–Vis spectroscopy. J. Drug Deliv. Sci. Technol. 2015, 29, 24–30. [Google Scholar] [CrossRef]
- Jung, H. Hyaluronidase: An overview of its properties, applications, and side effects. Arch. Plast. Surg. 2020, 47, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Micheels, P.; Porcello, A.; Bezzola, T.; Perrenoud, D.; Christen, M.O.; Applegate, L.A.; Laurent, A. Comprehensive Evaluation of Injectability Attributes in OxiFree Dermal Fillers: MaiLi((R)) Product Variants and Clinical Case Reports. Gels 2024, 10, 276. [Google Scholar] [CrossRef] [PubMed]
- Micheels, P.; Porcello, A.; Bezzola, T.; Perrenoud, D.; Quinodoz, P.; Kalia, Y.; Allemann, E.; Laurent, A.; Jordan, O. Clinical Perspectives on the Injectability of Cross-Linked Hyaluronic Acid Dermal Fillers: A Standardized Methodology for Commercial Product Benchmarking with Inter-Injector Assessments. Gels 2024, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Ginter, A.; Lee, T.; Woodward, J. How Much Does Filler Apparatus Influence Ease of Injection (and Hence, Potential Safety)? Ophthalmic Plast. Reconstr. Surg. 2023, 39, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Rosamilia, G.; Hamade, H.; Freytag, D.L.; Frank, K.; Green, J.B.; Devineni, A.; Gavril, D.L.; Hernandez, C.A.; Pavicic, T.; Cotofana, S. Soft tissue distribution pattern of facial soft tissue fillers with different viscoelastic properties. J. Cosmet. Dermatol. 2020, 19, 312–320. [Google Scholar] [CrossRef]
- Lee, W.; Hwang, S.G.; Oh, W.; Kim, C.Y.; Lee, J.L.; Yang, E.J. Practical Guidelines for Hyaluronic Acid Soft-Tissue Filler Use in Facial Rejuvenation. Dermatol. Surg. 2020, 46, 41–49. [Google Scholar] [CrossRef]
- Borzacchiello, A.; Russo, L.; Malle, B.M.; Schwach-Abdellaoui, K.; Ambrosio, L. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications. Biomed Res. Int. 2015, 2015, 871218. [Google Scholar] [CrossRef]
- Almeida, H.; Amaral, M.H.; Lobao, P.; Lobo, J.M.S. Applications of poloxamers in ophthalmic pharmaceutical formulations: An overview. Expert Opin. Drug Deliv. 2013, 10, 1223–1237. [Google Scholar] [CrossRef]
- Enright, K.M.; Weiner, S.F.; Durairaj, K.K.; Gilardino, M.S.; Nikolis, A. Evaluation of the Hydrophilic, Cohesive, and Physical Properties of Eight Hyaluronic Acid Fillers: Clinical Implications of Gel Differentiation. Clin. Cosmet. Investig. Dermatol. 2024, 17, 89–101. [Google Scholar] [CrossRef]
- Fundaro, S.P.; Salti, G.; Malgapo, D.M.H.; Innocenti, S. The Rheology and Physicochemical Characteristics of Hyaluronic Acid Fillers: Their Clinical Implications. Int. J. Mol. Sci. 2022, 23, 10518. [Google Scholar] [CrossRef]
- Sundaram, H.; Voigts, B.; Beer, K.; Meland, M. Comparison of the rheological properties of viscosity and elasticity in two categories of soft tissue fillers: Calcium hydroxylapatite and hyaluronic acid. Dermatol. Surg. 2010, 36 (Suppl. S3), 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Micheels, P.; Besse, S.; Sarazin, D. Two Crosslinking Technologies for Superficial Reticular Dermis Injection: A Comparative Ultrasound and Histologic Study. J. Clin. Aesthet. Dermatol. 2017, 10, 29–36. [Google Scholar]
- Salti, G.; Fundaro, S.P. Evaluation of the Rheologic and Physicochemical Properties of a Novel Hyaluronic Acid Filler Range with eXcellent Three-Dimensional Reticulation (XTR) Technology. Polymers 2020, 12, 1644. [Google Scholar] [CrossRef] [PubMed]
- Kleine-Börger, L.; Kalies, A.; Meyer, R.S.; Kerscher, M. Physicochemical Properties of Injectable Hyaluronic Acid: Skin Quality Boosters. Macromol. Mater. Eng. 2021, 306, 2100134. [Google Scholar] [CrossRef]
- Edsman, K.; Nord, L.I.; Ohrlund, A.; Larkner, H.; Kenne, A.H. Gel properties of hyaluronic acid dermal fillers. Dermatol. Surg. 2012, 38, 1170–1179. [Google Scholar] [CrossRef]
- Lorenc, Z.P.; Öhrlund, Å.; Edsman, K. Factors Affecting the Rheological Measurement of Hyaluronic Acid Gel Fillers. J. Drugs Dermatol. 2017, 16, 876–882. [Google Scholar]
- Pierre, S.; Liew, S.; Bernardin, A. Basics of dermal filler rheology. Dermatol. Surg. 2015, 41 (Suppl. S1), S120–S126. [Google Scholar] [CrossRef]
- Shi, M.; Zheng, X.; Ge, Y.; Zhang, N.; Yu, L.; Duan, X.; Liu, Y.; Xue, H.; You, J.; Yin, L. Unraveling the cytotoxicity and cellular uptake of low, medium and high molecular weight polyethylene glycol polymers in MCF-7 cells by green UPLC-MS/MS methods. J. Pharm. Biomed. Anal. 2024, 238, 115868. [Google Scholar] [CrossRef]
w/w (mg) | Maleimide-Modified HA | ||||
---|---|---|---|---|---|
4-arm PEG-SH | MW/DS | HM0 | HM10 | HM20 | HM30 |
PEG-10K (4SH10K) | HM0-4SH10K (10/10) | HM10-4SH10K (10/10) | HM20-4SH10K (10/10) | HM30-4SH10K (10/10) | |
PEG-20K (4SH20K) | HM0-4SH20K (10/10) | HM0-4SH20K (10/10) | HM0-4SH20K (10/10) | HM0-4SH20K (10/10) |
Samples | G′ (Pa) | G″ (Pa) | Tan δ | G* (Pa) | η* (Pas) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 1 | 4 | 0.1 | 1 | 4 | 0.1 | 1 | 4 | 0.1 | 1 | 4 | 0.1 | 1 | 4 | |
HM10-4SH10K | 574.36 | 576.04 | 596.86 | 7.857 | 4.580 | 4.606 | 0.014 | 0.008 | 0.008 | 574.41 | 576.06 | 596.88 | 910.38 | 91.30 | 23.76 |
HM20-4SH10K | 724.04 | 736.83 | 736.87 | 21.50 | 14.99 | 13.13 | 0.030 | 0.020 | 0.018 | 724.36 | 736.98 | 736.98 | 1148.0 | 116.8 | 29.34 |
HM30-4SH10K | 1306.1 | 1332.8 | 1352.9 | 35.89 | 22.51 | 21.07 | 0.027 | 0.017 | 0.016 | 1306.6 | 1333.0 | 1352.1 | 2070.0 | 211.0 | 53.80 |
HM10-4SH20K | 690.48 | 697.29 | 702.94 | 9.561 | 6.194 | 6.274 | 0.014 | 0.009 | 0.009 | 690.55 | 697.32 | 702.97 | 1090.0 | 111.0 | 27.99 |
HM20-4SH20K | 1014.4 | 1042.0 | 1072.6 | 24.22 | 20.77 | 20.56 | 0.024 | 0.020 | 0.019 | 1014.7 | 1042.3 | 1072.8 | 1610.0 | 165.0 | 42.71 |
HM30-4SH20K | 1364.3 | 1389.4 | 1422.2 | 46.51 | 29.11 | 28.38 | 0.034 | 0.021 | 0.020 | 1365.1 | 1389.7 | 1422.6 | 2160.0 | 220.0 | 56.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, C.-W.; Cheng, W.-J.; Wen, B.-Y.; Liang, Y.-K.; Sheu, M.-T.; Chen, L.-C.; Lin, H.-L. Preparation and Rheological Evaluation of Thiol–Maleimide/Thiol–Thiol Double Self-Crosslinking Hyaluronic Acid-Based Hydrogels as Dermal Fillers for Aesthetic Medicine. Gels 2024, 10, 776. https://doi.org/10.3390/gels10120776
Chu C-W, Cheng W-J, Wen B-Y, Liang Y-K, Sheu M-T, Chen L-C, Lin H-L. Preparation and Rheological Evaluation of Thiol–Maleimide/Thiol–Thiol Double Self-Crosslinking Hyaluronic Acid-Based Hydrogels as Dermal Fillers for Aesthetic Medicine. Gels. 2024; 10(12):776. https://doi.org/10.3390/gels10120776
Chicago/Turabian StyleChu, Chia-Wei, Wei-Jie Cheng, Bang-Yu Wen, Yu-Kai Liang, Ming-Thau Sheu, Ling-Chun Chen, and Hong-Liang Lin. 2024. "Preparation and Rheological Evaluation of Thiol–Maleimide/Thiol–Thiol Double Self-Crosslinking Hyaluronic Acid-Based Hydrogels as Dermal Fillers for Aesthetic Medicine" Gels 10, no. 12: 776. https://doi.org/10.3390/gels10120776
APA StyleChu, C. -W., Cheng, W. -J., Wen, B. -Y., Liang, Y. -K., Sheu, M. -T., Chen, L. -C., & Lin, H. -L. (2024). Preparation and Rheological Evaluation of Thiol–Maleimide/Thiol–Thiol Double Self-Crosslinking Hyaluronic Acid-Based Hydrogels as Dermal Fillers for Aesthetic Medicine. Gels, 10(12), 776. https://doi.org/10.3390/gels10120776