Enhanced Lot Acceptance Testing Based on Defect Counts and Posterior Odds Ratios
<p>Optimal (<span class="html-italic">solid line</span>) and approximate (<span class="html-italic">dashed line</span>) sample sizes, <math display="inline"><semantics> <msup> <mi>n</mi> <mo>*</mo> </msup> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>a</mi> </msub> <mo>,</mo> </mrow> </semantics></math> versus the prior odds ratio when <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.7</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.10</mn> <mo>.</mo> </mrow> </semantics></math></p> "> Figure 2
<p>Optimal (<span class="html-italic">solid line</span>) and approximate (<span class="html-italic">dashed line</span>) acceptance constants, <math display="inline"><semantics> <msup> <mi>c</mi> <mo>*</mo> </msup> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mi>a</mi> </msub> <mo>,</mo> </mrow> </semantics></math> versus the prior odds ratio when <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.7</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.10</mn> <mo>.</mo> </mrow> </semantics></math></p> "> Figure 3
<p>Optimal Bayesian (<span class="html-italic">solid line</span>) and frequentist (<span class="html-italic">dashed line</span>) sample sizes, <math display="inline"><semantics> <msup> <mi>n</mi> <mo>*</mo> </msup> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>f</mi> </msub> <mo>,</mo> </mrow> </semantics></math> versus the prior odds ratio when <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.65</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.10</mn> <mo>.</mo> </mrow> </semantics></math></p> "> Figure 4
<p>Optimal Bayesian (<span class="html-italic">solid line</span>) and frequentist (<span class="html-italic">dashed line</span>) acceptance constants, <math display="inline"><semantics> <msup> <mi>c</mi> <mo>*</mo> </msup> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mi>f</mi> </msub> <mo>,</mo> </mrow> </semantics></math> versus the prior odds ratio when <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.65</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.10</mn> <mo>.</mo> </mrow> </semantics></math></p> ">
Abstract
:1. Introduction
2. Posterior Odds Ratio Testing
3. Design of Lot Acceptance Sampling Plans
4. Explicit Approximate Risks and Plans
5. Computation of Optimal Inspection Schemes
6. Illustrative Examples
7. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baklizi, A.; El Masri, A.E.Q. Acceptance sampling based on truncated life tests in the Birnbaum Saunders model. Risk Anal. 2004, 24, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Balamurali, S.; Jun, C.-H. Multiple dependent state sampling plans for lot acceptance based on measurement data. Eur. J. Oper. Res. 2007, 180, 1221–1230. [Google Scholar] [CrossRef]
- Tsai, T.-R.; Lu, Y.-T.; Wu, S.-J. Reliability sampling plans for Weibull distribution with limited capacity of test facility. Comput. Ind. Eng. 2008, 55, 721–728. [Google Scholar] [CrossRef]
- Lee, W.-C.; Wu, J.-W.; Hong, C.-W. Assessing the lifetime performance index of products with the exponential distribution under progressively type II right censored samples. J. Comput. Appl. Math. 2009, 231, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Tsai, T.-R. Interval censored sampling plans for the gamma lifetime model. Eur. J. Oper. Res. 2009, 192, 116–124. [Google Scholar] [CrossRef]
- Aslam, M.; Azam, M.; Jun, C.-H. A mixed repetitive sampling plan based on process capability index. Appl. Math. Model. 2013, 37, 10027–10035. [Google Scholar] [CrossRef]
- Fernández, A.J. Optimum attributes component test plans for k-out-of-n:F Weibull systems using prior information. Eur. J. Oper. Res. 2015, 240, 688–696. [Google Scholar] [CrossRef]
- Wu, C.-W.; Shu, M.-H.; Nugroho, A.A.; Kurniati, N. A flexible process-capability-qualified resubmission-allowed acceptance sampling scheme. Comput. Ind. Eng. 2015, 80, 62–71. [Google Scholar] [CrossRef]
- Wu, C.-W.; Lee, A.H.I.; Liu, S.-W.; Shih, M.-H. Capability-based quick switching sampling system for lot disposition. Appl. Math. Model. 2017, 52, 131–144. [Google Scholar] [CrossRef]
- Qin, R.; Cudney, E.A.; Hamzic, Z. An optimal plan of zero-defect single-sampling by attributes for incoming inspections in assembly lines. Eur. J. Oper. Res. 2015, 246, 907–915. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Wu, C.-W.; Wang, Z.-H. The construction of a modified sampling scheme by variables inspection based on the one-sided capability index. Comput. Ind. Eng. 2018, 122, 87–94. [Google Scholar] [CrossRef]
- Roy, S. Bayesian accelerated life test plans for series systems with Weibull component lifetimes. Appl. Math. Model. 2018, 62, 383–403. [Google Scholar] [CrossRef]
- Algarni, A. Group Acceptance Sampling Plan Based on New Compounded Three-Parameter Weibull Model. Axioms 2022, 11, 438. [Google Scholar] [CrossRef]
- Alyami, S.A.; Elgarhy, M.; Elbatal, I.; Almetwally, E.M.; Alotaibi, N.; El-Saeed, A.R. Fréchet Binomial Distribution: Statistical Properties, Acceptance Sampling Plan, Statistical Inference and Applications to Lifetime Data. Axioms 2022, 11, 389. [Google Scholar] [CrossRef]
- Fernández, A.J. Optimal defects-per-unit acceptance sampling plans using truncated prior distributions. IEEE Trans. Reliab. 2014, 63, 634–645. [Google Scholar] [CrossRef]
- Anbazhagan, N.; Wang, J.; Gomathi, D. Base stock policy with retrial demands. Appl. Math. Model. 2013, 37, 4464–4473. [Google Scholar] [CrossRef]
- Alizadeh, M.; Eskandari, H.; Sajadifar, S.M. A modified (S-1,S) inventory system for deteriorating items with Poisson demand and non-zero lead time. Appl. Math. Model. 2014, 38, 699–711. [Google Scholar] [CrossRef]
- Chen, K.-S.; Yang, C.-M. Developing a performance index with a Poisson process and an exponential distribution for operations management and continuous improvement. J. Comput. Appl. Math. 2018, 343, 737–747. [Google Scholar] [CrossRef]
- Chuang, H.H.-C. Fixing shelf out-of-stock with signals in point-of-sale data. Eur. J. Oper. Res. 2018, 270, 862–872. [Google Scholar] [CrossRef]
- Wan, Q.; Liu, C.; Wu, Y.; Zhou, W. A TBE control chart-based maintenance policy for a service facility. Comput. Ind. Eng. 2018, 126, 136–148. [Google Scholar] [CrossRef]
- Fernández, A.J. Most powerful lot acceptance test plans from dispersed nonconformity counts. Int. J. Adv. Manuf. Technol. 2017, 90, 233–240. [Google Scholar] [CrossRef]
- Conway, R.W.; Maxwell, W.L. A queuing model with state dependent service rates. J. Ind. Eng. 1962, 12, 132–136. [Google Scholar]
- Shmueli, G.; Minka, T.; Kadane, J.B.; Borle, S.; Boatwright, P.B. A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution. Appl. Stat. 2005, 54, 127–142. [Google Scholar] [CrossRef]
- Sellers, K.F.; Borle, S.; Shmueli, G. The COM-Poisson model for count data: A survey of methods and applications. Appl. Stoch. Model. Bus. Ind. 2012, 28, 104–116. [Google Scholar] [CrossRef]
- Francis, R.A.; Geedipally, S.R.; Guikema, S.D.; Dhavala, S.S.; Lord, D.; LaRocca, S. Characterizing the performance of the Conway-Maxwell-Poisson generalized linear model. Risk Anal. 2012, 32, 167–183. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F. Modeling time series of counts with COM-Poisson INGARCH models. Math. Comput. Model. 2012, 56, 191–203. [Google Scholar] [CrossRef]
- Santarelli, M.F.; Della Latta, D.; Scipioni, M.; Positano, V.; Landini, L. A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography. Comput. Biol. Med. 2016, 77, 90–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torney, D.C. Bayesian analysis of binary sequences. J. Comput. Appl. Math. 2005, 175, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.J. Bayesian estimation based on trimmed samples from Pareto populations. Comput. Stat. Data Anal. 2006, 51, 1119–1130. [Google Scholar] [CrossRef]
- Fernández, A.J. Weibull inference using trimmed samples and prior information. Stat. Pap. 2009, 50, 119–136. [Google Scholar] [CrossRef]
- Fernández, A.J. Computing tolerance limits for the lifetime of a k-out-of-n:F system based on prior information and censored data. Appl. Math. Model. 2014, 38, 548–561. [Google Scholar] [CrossRef]
- Yan, L.; Yang, F.; Fu, C. A Bayesian inference approach to identify a Robin coefficient in one-dimensional parabolic problems. J. Comput. Appl. Math. 2009, 231, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-C.; Wu, J.-W.; Hong, M.-L.; Lin, L.-S.; Chan, R.-L. Assessing the lifetime performance index of Rayleigh products based on the Bayesian estimation under progressive type II right censored samples. J. Comput. Appl. Math. 2011, 235, 1676–1688. [Google Scholar] [CrossRef]
- Jaheen, Z.F.; Okasha, H.M. E-Bayesian estimation for the Burr type XII model based on type-2 censoring. Appl. Math. Model. 2011, 35, 4730–4737. [Google Scholar] [CrossRef]
- Asl, M.N.; Belaghi, R.A.; Bevrani, H. Classical and Bayesian inferential approaches using Lomax model under progressively type-I hybrid censoring. J. Comput. Appl. Math. 2018, 343, 397–412. [Google Scholar] [CrossRef]
- He, D.; Wang, Y.; Chang, G. Objective Bayesian analysis for the accelerated degradation model based on the inverse Gaussian process. Appl. Math. Model. 2018, 61, 341–350. [Google Scholar] [CrossRef]
- Alotaibi, R.; Nassar, M.; Ghosh, I.; Rezk, H.; Elshahhat, A. Inferences of a Mixture Bivariate Alpha Power Exponential Model with Engineering Application. Axioms 2022, 11, 459. [Google Scholar] [CrossRef]
- Yousef, M.M.; Hassan, A.S.; Alshanbari, H.M.; El-Bagoury, A.-A.H.; Almetwally, E.M. Bayesian and Non-Bayesian Analysis of Exponentiated Exponential Stress–Strength Model Based on Generalized Progressive Hybrid Censoring Process. Axioms 2022, 11, 455. [Google Scholar] [CrossRef]
- Fernández, A.J. Optimal schemes for resubmitted lot acceptance using previous defect count data. Comput. Ind. Eng. 2015, 87, 66–73. [Google Scholar] [CrossRef]
Optimal Test Plan | Approximate Test Plan | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
BPR | BCR | BPR | BCR | |||||||
1% | 5% | 0.2 | 33 | 14.575 | 0.963% | 4.870% | 36 | 15.214 | 1.151% | 2.760% |
0.5 | 31 | 15.956 | 0.943% | 4.758% | 30 | 14.855 | 1.647% | 3.785% | ||
0.8 | 24 | 15.068 | 0.997% | 4.982% | 19 | 11.591 | 3.265% | 5.177% | ||
10% | 0.2 | 28 | 12.852 | 0.956% | 9.899% | 30 | 13.202 | 1.186% | 6.278% | |
0.5 | 25 | 13.769 | 0.900% | 9.487% | 22 | 11.710 | 1.693% | 9.667% | ||
0.8 | 17 | 12.443 | 0.839% | 9.475% | 11 | 8.1634 | 4.051% | 10.71% | ||
5% | 5% | 0.2 | 23 | 8.3266 | 4.720% | 4.228% | 28 | 9.9554 | 4.440% | 1.959% |
0.5 | 22 | 10.376 | 4.909% | 4.864% | 23 | 10.361 | 6.117% | 3.521% | ||
0.8 | 18 | 10.734 | 4.536% | 4.997% | 15 | 8.7219 | 10.19% | 4.742% | ||
10% | 0.2 | 18 | 6.8477 | 4.856% | 9.766% | 22 | 8.0255 | 4.361% | 5.688% | |
0.5 | 17 | 8.6809 | 4.622% | 9.919% | 17 | 8.2708 | 5.212% | 9.157% | ||
0.8 | 12 | 8.5751 | 4.270% | 9.459% | 8 | 5.8200 | 11.04% | 10.57% |
Optimal Test Plan | Approximate Test Plan | ||||||||
---|---|---|---|---|---|---|---|---|---|
d | BPR | BCR | BPR | BCR | |||||
0.5 | 0.2 | 20 | 8.0493 | 3.987% | 8.566% | 21 | 8.0642 | 4.713% | 5.862% |
0.5 | 19 | 9.7439 | 4.367% | 8.110% | 17 | 8.6257 | 4.632% | 10.05% | |
0.8 | 14 | 9.7439 | 3.886% | 8.359% | 8 | 5.9554 | 8.544% | 11.81% | |
1.0 | 0.2 | 27 | 8.8966 | 4.716% | 8.739% | 29 | 9.4692 | 4.124% | 8.143% |
0.5 | 27 | 11.439 | 3.982% | 9.600% | 25 | 10.320 | 4.583% | 10.44% | |
0.8 | 19 | 10.591 | 3.993% | 9.770% | 14 | 7.8529 | 7.929% | 10.89% | |
1.5 | 0.2 | 33 | 9.7439 | 4.939% | 8.821% | 35 | 10.328 | 4.220% | 8.793% |
0.5 | 33 | 12.286 | 4.296% | 9.908% | 31 | 11.315 | 5.144% | 10.11% | |
0.8 | 24 | 11.439 | 4.279% | 9.812% | 19 | 9.0881 | 9.565% | 9.628% |
Optimal Test Plan | Approximate Test Plan | ||||||||
---|---|---|---|---|---|---|---|---|---|
d | BPR | BCR | BPR | BCR | |||||
0.5 | 0.2 | 56 | 12.412 | 4.857% | 9.455% | 60 | 13.231 | 4.273% | 8.455% |
0.5 | 55 | 14.524 | 4.749% | 9.674% | 53 | 13.881 | 5.114% | 9.976% | |
0.8 | 41 | 13.468 | 4.127% | 9.864% | 31 | 10.248 | 8.326% | 10.567% | |
1.0 | 0.2 | 48 | 12.690 | 4.421% | 9.735% | 50 | 12.987 | 5.517% | 6.300% |
0.5 | 47 | 14.547 | 4.985% | 9.248% | 45 | 13.894 | 5.361% | 9.721% | |
0.8 | 35 | 13.309 | 4.886% | 9.349% | 28 | 10.835 | 7.965% | 10.22% | |
1.5 | 0.2 | 43 | 12.956 | 4.255% | 9.445% | 43 | 12.677 | 4.259% | 9.528% |
0.5 | 43 | 15.057 | 4.844% | 8.594% | 40 | 14.040 | 4.365% | 11.08% | |
0.8 | 33 | 14.357 | 3.670% | 9.623% | 25 | 10.973 | 8.547% | 9.896% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, A.J. Enhanced Lot Acceptance Testing Based on Defect Counts and Posterior Odds Ratios. Axioms 2022, 11, 604. https://doi.org/10.3390/axioms11110604
Fernández AJ. Enhanced Lot Acceptance Testing Based on Defect Counts and Posterior Odds Ratios. Axioms. 2022; 11(11):604. https://doi.org/10.3390/axioms11110604
Chicago/Turabian StyleFernández, Arturo J. 2022. "Enhanced Lot Acceptance Testing Based on Defect Counts and Posterior Odds Ratios" Axioms 11, no. 11: 604. https://doi.org/10.3390/axioms11110604
APA StyleFernández, A. J. (2022). Enhanced Lot Acceptance Testing Based on Defect Counts and Posterior Odds Ratios. Axioms, 11(11), 604. https://doi.org/10.3390/axioms11110604