Gridded Assessment of Mainland China’s Solar Energy Resources Using the Typical Meteorological Year Method and China Meteorological Forcing Dataset
<p>Schematic diagram of the TMY generation procedure. The five three-hourly variables shown at the top are from CMFD.</p> "> Figure 2
<p>Study domain. Blue lines denote the Yangtze and Huai Rivers. Black lines denote the province boundaries.</p> "> Figure 3
<p>China’s solar energy resources assessed using the TMY method for a thirty-year period (1991 to 2020). (<b>a</b>) annual global horizontal solar radiation, and (<b>b</b>) abundance grade of the solar energy resources. The definitions of the grades A, B, C, and D are described in <a href="#sec2dot3-atmosphere-15-00225" class="html-sec">Section 2.3</a>.</p> "> Figure 4
<p>Relative changes in the solar radiation estimates using the reference periods of different lengths. The changes are relative to the thirty-year period from 1991 to 2020: (<b>a</b>) 10 years from 2011 to 2020; (<b>b</b>) 20 years from 2001 to 2020; (<b>c</b>) 40 years from 1981 to 2020; and (<b>d</b>) 50 years from 1971 to 2020.</p> "> Figure 5
<p>Relative difference between the MYA and TMY methods in calculating annual solar radiation. The left panels present the spatial distribution, whereas the right panels present the probability distribution function (PDF).</p> "> Figure 6
<p>Seasonal radiation estimated with the TMY method for the thirty-year period (1991 to 2020). The values are fractions of the annual totals. (<b>a</b>) MAM for March, April, and May; (<b>b</b>) JJA for June, July, and August; (<b>c</b>) SON for September, October, and November; and (<b>d</b>) DJF for December, January, and February.</p> "> Figure 7
<p>Seasonal stability index and grade of the solar energy resource assessed using the TMY method for the thirty-year period (1991 to 2020). The seasonal stability index is defined as the ratio of the minimum monthly radiation to its maximum value. The stability grades A, B, C, and D are defined in <a href="#sec2dot3-atmosphere-15-00225" class="html-sec">Section 2.3</a>.</p> "> Figure 8
<p>Difference between the MYA and TMY methods in calculating seasonal solar radiation for the thirty-year reference period (1991 to 2020). The values are presented as the percentage of the annual solar radiation estimated using the TMY method (<a href="#atmosphere-15-00225-f003" class="html-fig">Figure 3</a>a).</p> "> Figure 9
<p>Difference in the seasonal stability index and grade between the MYA and TMY methods: (<b>a</b>) Difference of the MYA method relative to TMY; (<b>b</b>) Difference in the seasonal stability grade of the MYA method relative to TMY. Red denotes an upgrade (up arrow), whereas blue denotes a downgrade (down arrow); (<b>c</b>) Probability distribution function (PDF) of the difference in the seasonal stability index.</p> "> Figure 10
<p>Sensitivity of annual solar radiation to the considered meteorological variables. The three rows present the impacts of wind speed, air temperature, and dew point, respectively. The right panels present the probability distribution function of the relative differences corresponding to the left panels.</p> "> Figure 11
<p>Sensitivity of the seasonal stability index to the considered meteorological variables. The three rows present the impacts of wind speed, air temperature, and dew point, respectively. The right panels present the cumulative distribution function of the relative changes corresponding to the left panels. The lower and upper numbers in the right panels denote the CDFs of the area with negative and non-negative changes, respectively.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. China Meteorological Forcing Dataset
2.2. Typical Meteorological Year
2.3. Experimental Settings and Analysis Methods
3. Results and Discussion
3.1. Annual Solar Radiation
3.2. Seasonal Variations
3.3. Impacts of the Meteorological Variables
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, K.; Ma, Q.; Li, Z.; Wang, J. Decadal Variability of Surface Incident Solar Radiation over China: Observations, Satellite Retrievals, and Reanalyses. J. Geophys. Res. Atmos. 2015, 120, 6500–6514. [Google Scholar] [CrossRef]
- He, Y.; Wang, K. Variability in Direct and Diffuse Solar Radiation across China from 1958 to 2017. Geophys. Res. Lett. 2020, 47, e2019GL084570. [Google Scholar] [CrossRef]
- Shaner, M.R.; Davis, S.J.; Lewis, N.S.; Caldeira, K. Geophysical Constraints on the Reliability of Solar and Wind Power in the United States. Energy Environ. Sci. 2018, 11, 914–925. [Google Scholar] [CrossRef]
- Tong, D.; Farnham, D.J.; Duan, L.; Zhang, Q.; Lewis, N.S.; Caldeira, K.; Davis, S.J. Geophysical Constraints on the Reliability of Solar and Wind Power Worldwide. Nat. Commun. 2021, 12, 6146. [Google Scholar] [CrossRef]
- Tang, W.; Qi, J.; Wang, Y.; He, J. Dense Station-Based Potential Assessment for Solar Photovoltaic Generation in China. J. Clean. Prod. 2023, 414, 137607. [Google Scholar] [CrossRef]
- Shi, H.; Yang, D.; Wang, W.; Fu, D.; Gao, L.; Zhang, J.; Hu, B.; Shan, Y.; Zhang, Y.; Bian, Y.; et al. First Estimation of High-Resolution Solar Photovoltaic Resource Maps over China with Fengyun-4A Satellite and Machine Learning. Renew. Sustain. Energy Rev. 2023, 184, 113549. [Google Scholar] [CrossRef]
- Abreu, E.F.M.; Canhoto, P.; Prior, V.; Melicio, R. Solar Resource Assessment through Long-Term Statistical Analysis and Typical Data Generation with Different Time Resolutions Using GHI Measurements. Renew. Energy 2018, 127, 398–411. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Lv, K.; Liu, J.; Yang, L. Compare Several Methods of Select Typical Meteorological Year for Building Energy Simulation in China. Energy 2020, 209, 118465. [Google Scholar] [CrossRef]
- Chang, R.; Shen, Y.; Guo, P. Comparative analysis on the applicability of different typical meteorological year generating method in solar energy resource assessment. Plateau Meteorol. 2017, 36, 1713–1721. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, Y. Generation of Typical Meteorological Year for Different Climates of China. Energy 2010, 35, 1946–1953. [Google Scholar] [CrossRef]
- Bulut, H. Typical Solar Radiation Year for Southeastern Anatolia. Renew. Energy 2004, 29, 1477–1488. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Psiloglou, B.E.; Kaskaoutis, D.G.; Karagiannis, D.; Petrinoli, K.; Gavriil, A.; Kavadias, K. Generation of typical meteorological years for 33 locations in Greece: Adaptation to the needs of various applications. Theor. Appl. Climatol. 2020, 141, 1313–1330. [Google Scholar] [CrossRef]
- Markou, M.T.; Kambezidis, H.D.; Bartzokas, A.; Darula, S.; Kittler, R. Generation of daylight reference years for two European cities with different climate: Athens, Greece and Bratislava, Slovakia. Atmos. Res. 2007, 86, 315–329. [Google Scholar] [CrossRef]
- Pissimanis, D.; Karras, G.; Notaridou, V.; Gavra, K. The Generation of a “Typical Meteorological Year” for the City of Athens. Sol. Energy 1988, 40, 405–411. [Google Scholar] [CrossRef]
- Hall, I.J.; Prairie, R.R.; Anderson, H.E.; Boes, E.C. Generation of a Typical Meteorological Year. In Proceedings of the Analysis for Solar Heating and Cooling, San Diego, CA, USA, 27 June 1978; p. 3. [Google Scholar]
- Janjai, S.; Deeyai, P. Comparison of Methods for Generating Typical Meteorological Year Using Meteorological Data from a Tropical Environment. Appl. Energy 2009, 86, 528–537. [Google Scholar] [CrossRef]
- Ecevit, A.; Akinoglu, B.G.; Aksoy, B. Generation of a Typical Meteorological Year Using Sunshine Duration Data. Energy 2002, 27, 947–954. [Google Scholar] [CrossRef]
- Petrie, W.R.; McClintock, M. Determining Typical Weather for Use in Solar Energy Simulations. Sol. Energy 1978, 21, 55–59. [Google Scholar] [CrossRef]
- Feuermann, D.; Gordon, J.M.; Zarmi, Y. A Typical Meteorological Day (TMD) Approach for Predicting the Long-Term Performance of Solar Energy Systems. Sol. Energy 1985, 35, 63–69. [Google Scholar] [CrossRef]
- Al-Hinai, H.A.; Al-Alawi, S.M. Typical Solar Radiation Data for Oman. Appl. Energy 1995, 52, 153–163. [Google Scholar] [CrossRef]
- Mosalam Shaltout, M.A.; Tadros, M.T.Y. Typical Solar Radiation Year for Egypt. Renew. Energy 1994, 4, 387–393. [Google Scholar] [CrossRef]
- Argiriou, A.; Lykoudis, S.; Kontoyiannidis, S.; Balaras, C.A.; Asimakopoulos, D.; Petrakis, M.; Kassomenos, P. Comparison of Methodologies for TMY Generation Using 20 Years Data for Athens, Greece. Sol. Energy 1999, 66, 33–45. [Google Scholar] [CrossRef]
- Festa, R.; Ratto, C.F. Proposal of a Numerical Procedure to Select Reference Years. Sol. Energy 1993, 50, 9–17. [Google Scholar] [CrossRef]
- National Standard of China GB/T 42766–2023; Specifications for Solar Energy Resource Assessment of Photovoltaic Power Generation. State Administration for Market Regulation: Beijing, China; Standardization Administration of China: Beijing, China, 2023.
- Polo, J.; Alonso-Abella, M.; Martín-Chivelet, N.; Alonso-Montesinos, J.; López, G.; Marzo, A.; Nofuentes, G.; Vela-Barrionuevo, N. Typical Meteorological Year Methodologies Applied to Solar Spectral Irradiance for PV Applications. Energy 2020, 190, 116453. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Y.; Yan, G. Generation of Typical Solar Radiation Year for China. Renew. Energy 2006, 31, 1972–1985. [Google Scholar] [CrossRef]
- Cebecauer, T.; Suri, M. Typical Meteorological Year Data: SolarGIS Approach. Energy Procedia 2015, 69, 1958–1969. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis: Preliminary Extension to 1950. Q. J. R. Meteorol. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The First High-Resolution Meteorological Forcing Dataset for Land Process Studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Lu, H.; Yang, K.; He, J.; Wang, W.; Wright, J.S.; Li, C.; Han, M.; Li, Y. Evaluation of Multiple Forcing Data Sets for Precipitation and Shortwave Radiation over Major Land Areas of China. Hydrol. Earth Syst. Sci. 2017, 21, 5805–5821. [Google Scholar] [CrossRef]
- Lei, N.; Zhou, Z.; Zhuang, Q.; Chen, W.; Chalov, S.; Liu, S.; Gao, L.; Dong, G. Performance Evaluation and Improvement of CMFD’s Precipitation Products over Shanghai City, China. Earth Space Sci. 2023, 10, e2022EA002690. [Google Scholar] [CrossRef]
- Huang, J. A Simple Accurate Formula for Calculating Saturation Vapor Pressure of Water and Ice. J. Appl. Meteorol. Climatol. 2018, 57, 1265–1272. [Google Scholar] [CrossRef]
- Finkelstein, J.M.; Schafer, R.E. Improved Goodness-of-Fit Tests. Biometrika 1971, 58, 641–645. [Google Scholar] [CrossRef]
- National Standard of China GB/T 37525–2019; Calculation Guideline for Solar Direct Radiation. State Administration for Market Regulation: Beijing, China; Standardization Administration of China: Beijing, China, 2019.
- Tang, W.; He, J.; Qi, J.; Yang, K. A Dense Station-Based, Long-Term and High-Accuracy Dataset of Daily Surface Solar Radiation in China. Earth Syst. Sci. Data 2023, 15, 4537–4551. [Google Scholar] [CrossRef]
- Li, K.; He, F. Analysis of Mainland China’s Solar Energy Distribution and Potential to Utilize Solar Energy as an Alternative Energy Source. Prog. Geogr. 2010, 29, 1049–1054. (In Chinese) [Google Scholar]
Aspect | MYA | TMY |
---|---|---|
Input data | Use solar radiation data only. | Use solar radiation and multiple surface meteorological variables such as air temperature, wind speed, and dew point. |
Calculation of annual solar radiation | Arithmetic average of the solar radiation data over multiple years. | Arithmetic average of the solar radiation over a TMY. The TMY is generated using multiple meteorological variables. |
Calculation of annual solar radiation cycle. | Multi-year averaged annual cycle | Annual cycle of the TMY. |
Consideration of extreme weather conditions | No. | Yes. Consider the climatology of extreme daily statistics such as maximum and minimum air temperature. |
Experiment | Method | Averaging Weights 1 | Climatology |
---|---|---|---|
A | TMY | 1/2, 1/12, 1/24, 1/24, 1/12, 1/24, 1/24, 1/12, & 1/12 | 1991–2020 |
B | TMY | The same as A | 2011–2020 |
C | TMY | The same as A | 2001–2020 |
D | TMY | The same as A | 1981–2020 |
E | TMY | The same as A | 1971–2020 |
F | MYA | - | 1991–2020 |
G | TMY | The same as A | 2011–2020 |
H | MYA | - | 2011–2020 |
I | TMY | 12/20, 2/20, 1/20, 1/20, 2/20, 1/20, 1/20, 0, & 0 | 1991–2020 |
J | TMY | 12/20, 2/20, 1/20, 1/20, 0, 0, 0, 2/20, & 2/20 | 1991–2020 |
K | TMY | 12/20, 0, 0, 0, 2/20, 1/20, 1/20, 2/20, & 2/20 | 1991–2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Wang, B.; Zheng, H.; Jin, S.; Liu, X.; Hua, S. Gridded Assessment of Mainland China’s Solar Energy Resources Using the Typical Meteorological Year Method and China Meteorological Forcing Dataset. Atmosphere 2024, 15, 225. https://doi.org/10.3390/atmos15020225
Song Z, Wang B, Zheng H, Jin S, Liu X, Hua S. Gridded Assessment of Mainland China’s Solar Energy Resources Using the Typical Meteorological Year Method and China Meteorological Forcing Dataset. Atmosphere. 2024; 15(2):225. https://doi.org/10.3390/atmos15020225
Chicago/Turabian StyleSong, Zongpeng, Bo Wang, Hui Zheng, Shuanglong Jin, Xiaolin Liu, and Shenbing Hua. 2024. "Gridded Assessment of Mainland China’s Solar Energy Resources Using the Typical Meteorological Year Method and China Meteorological Forcing Dataset" Atmosphere 15, no. 2: 225. https://doi.org/10.3390/atmos15020225
APA StyleSong, Z., Wang, B., Zheng, H., Jin, S., Liu, X., & Hua, S. (2024). Gridded Assessment of Mainland China’s Solar Energy Resources Using the Typical Meteorological Year Method and China Meteorological Forcing Dataset. Atmosphere, 15(2), 225. https://doi.org/10.3390/atmos15020225