Effects of Surface Layer Physics Schemes on the Simulated Intensity and Structure of Typhoon Rai (2021)
<p>The WRF model domains for Rai at the initial time. The outermost box (d01) denotes the outermost domain, while the red and blue boxes (d02 and d03, respectively) denote the two inner moving domains. The dashed black line (JMA) with cycles at intervals of 24 h indicates the best track from JMA from 0000 UTC 14 December to 0000 UTC 18 December 2021.</p> "> Figure 2
<p>(<b>a</b>) Tracks of Typhoon Rai, including the best track data from JTWC (dashed black line) and JMA (solid black line), as well as simulated tracks for CTL (red line), MM5 (blue line), and MYNN (green line), during the period from 0000 UTC 14 December to 0000 UTC 18 December 2021. Circle symbols in (<b>a</b>) indicate the time every 24 h. (<b>b</b>) as in (<b>a</b>), but for the 10-m maximum wind speed (V<sub>max</sub>, m s<sup>−1</sup>).</p> "> Figure 3
<p>12-h accumulated precipitation (mm) during 48–60 h from (<b>a</b>) multi-satellite precipitation product GSMaP, (<b>b</b>) CTL, (<b>c</b>) MM5, and (<b>d</b>) MYNN. (<b>e</b>), (<b>f</b>), (<b>g</b>), and (<b>h</b>) as in (<b>a</b>), (<b>b</b>), (<b>c</b>), and (<b>d</b>), respectively, but during 60–72 h. (<b>i</b>), (<b>j</b>), (<b>k</b>), and (<b>l</b>) as in (<b>a</b>), (<b>b</b>), (<b>c</b>), and (<b>d</b>), respectively, but during 72–84 h.</p> "> Figure 4
<p>Simulated ratio of enthalpy exchange coefficient to drag coefficient (C<sub>K</sub>/C<sub>D</sub>) as a function of 10-m wind speed for CTL (red line), MM5 (blue line), and MYNN (green line) at 54 h.</p> "> Figure 5
<p>Time evolutions of (<b>a</b>) friction velocity (m s<sup>−1</sup>), (<b>b</b>) surface sensible heat flux (W m<sup>−2</sup>), and (<b>c</b>) surface latent heat flux (W m<sup>−2</sup>) for CTL (red line), MM5 (blue line), and MYNN (green line), averaged within the area of 300 × 300 km around the typhoon center from 24 h to 72 h.</p> "> Figure 6
<p>Horizontal distribution of 10-m wind speed (shaded color, m s<sup>−1</sup>) for (<b>a</b>) CTL, (<b>b</b>) MM5, and (<b>c</b>) MYNN at 54 h. (<b>d</b>), (<b>e</b>), and (<b>f</b>) as in (<b>a</b>), (<b>b</b>), and (<b>c</b>), respectively, but for friction velocity (m s<sup>−1</sup>). (<b>g</b>), (<b>h</b>), and (<b>i</b>) as in (<b>a</b>), (<b>b</b>), and (<b>c</b>), respectively, but for surface sensible heat flux (W m<sup>−2</sup>). (<b>j</b>), (<b>k</b>), and (<b>l</b>) as in (<b>a</b>), (<b>b</b>), and (<b>c</b>), respectively, but for surface latent heat flux (W m<sup>−2</sup>). The black vectors in (<b>a</b>–<b>c</b>) denote the 10-m horizontal wind speed.</p> "> Figure 7
<p>Azimuthal-mean tangential velocity (m s<sup>−1</sup>) in the radius–height cross-section at 54 h for (<b>a</b>) CTL and (<b>b</b>) MM5. (<b>c</b>) and (<b>d</b>) as in (<b>a</b>) and (<b>b</b>), respectively, but for the radial velocity (m s<sup>−1</sup>). The black line in (<b>a</b>,<b>b</b>) represents the height of the maximum tangential wind speed (h<sub>vt</sub>). The black line in (<b>c</b>,<b>d</b>) represents the inflow layer depth (h<sub>vr</sub>).</p> "> Figure 8
<p>Time–radius Hovmöller diagrams of azimuthal-mean tangential wind (m s<sup>−1</sup>) at 2-km height for (<b>a</b>) CTL and (<b>b</b>) MM5 from 24 h to 72 h. (<b>c</b>) and (<b>d</b>) as in (<b>a</b>) and (<b>b</b>), respectively, but for radial wind (m s<sup>−1</sup>) at 0.25-km height. The black line in (<b>a</b>,<b>b</b>) represents the radius of maximum tangential wind speed (RMW) at 2 km height. The green line in (<b>c</b>,<b>d</b>) represents the maximum inflow at 0.25-km height.</p> "> Figure 9
<p>Azimuthal-mean potential temperature (K) in the radius–height cross-section for (<b>a</b>) CTL and (<b>b</b>) MM5 at 54 h. The thick black line represents the RMW.</p> "> Figure 10
<p>Time–height Hovmöller diagrams of azimuthal-mean potential temperature (K) inside RMW for (<b>a</b>) CTL and (<b>b</b>) MM5. (<b>c</b>) and (<b>d</b>) as in (<b>a</b>) and (<b>b</b>), respectively, but for warm core (K) averaged inside a radius of 1.5 degrees from the typhoon center.</p> "> Figure 11
<p>Azimuthal-mean flow (shaded color) in the radius–height cross-section of radial velocity (m s<sup>−1</sup>) for (<b>a</b>) CTL and (<b>b</b>) MM5 at 54 h. (<b>c</b>) and (<b>d</b>) as in (<b>a</b>) and (<b>b</b>), respectively, but for tangential velocity (m s<sup>−1</sup>). (<b>e</b>) and (<b>f</b>) as in (<b>a</b>) and (<b>b</b>), respectively, but for vertical velocity (m s<sup>−1</sup>). (<b>g</b>) and (<b>h</b>) as in (<b>a</b>) and (<b>b</b>), respectively, but for latent heating rate (K h<sup>−1</sup>). The green line represents the RMW. The reference vector in the lower right corner represents the radial and vertical wind components.</p> "> Figure 12
<p>Radius–height cross-sections of azimuthal-mean angular momentum (AAM) (shaded color, 10<sup>6</sup> m<sup>2</sup> s<sup>−1</sup>) for (<b>a</b>) CTL and (<b>b</b>) MM5 at 54 h. The green line represents the RMW. The reference vector in the lower right corner represents the radial and vertical wind components.</p> "> Figure 13
<p>Radius–height cross-section of azimuthal-mean AM budget terms (shaded color, m<sup>2</sup> s<sup>−2</sup>), including (<b>a</b>) radial advection of mean AM, (<b>b</b>) radial advection of eddy AM, (<b>c</b>) vertical advection of mean AM, (<b>d</b>) vertical advection of eddy AM, (<b>e</b>) mean Coriolis force term, and (<b>f</b>) sum of all AM budget terms for CTL at 54 h. The green line represents the RMW. The reference vector in the lower right corner represents the radial and vertical wind components.</p> "> Figure 14
<p>As in <a href="#atmosphere-15-01140-f013" class="html-fig">Figure 13</a>, but for MM5 including (<b>a</b>) radial advection of mean AM, (<b>b</b>) radial advection of eddy AM, (<b>c</b>) vertical advection of mean AM, (<b>d</b>) vertical advection of eddy AM, (<b>e</b>) mean Coriolis force term, and (<b>f</b>) sum of all AM budget terms for CTL at 54 h. The green line represents the RMW. The reference vector in the lower right corner represents the radial and vertical wind components.</p> "> Figure 15
<p>Azimuthal-mean radial velocity (shaded colors, m s<sup>−1</sup>) at 54 h from the Sawyer–Eliassen (SE) solution with total forcing sources for (<b>a</b>) CTL and (<b>b</b>) MM5. (<b>c</b>) and (<b>d</b>) as in (<b>a</b>) and (<b>b</b>), respectively, but with symmetric diabatic heating only. (<b>e</b>) and (<b>f</b>) as in (<b>a</b>) and (<b>b</b>), respectively, but with asymmetric eddy momentum and heating only. (<b>g</b>) and (<b>h</b>) as in (<b>a</b>) and (<b>b</b>), respectively, but with turbulent momentum diffusion only. (<b>i</b>) and (<b>j</b>) as in (<b>a</b>) and (<b>b</b>), respectively, but with residual terms only. The wind vectors (m s<sup>−1</sup>) induced by the total forcing sources overlapped in each panel indicate the radial and vertical wind components (m s<sup>−1</sup>) with their reference vectors given at the lower right corner.</p> "> Figure 16
<p>Azimuthal-mean vertical velocity (shaded colors, m s<sup>−1</sup>) at 54 h from the Sawyer–Eliassen (SE) solution with total forcing sources for (<b>a</b>) CTL and (<b>b</b>) MM5. (<b>c</b>) and (<b>d</b>) as in (<b>a</b>) and (<b>b</b>), respectively, but with symmetric diabatic heating only. (<b>e</b>) and (<b>f</b>) as in (<b>a</b>) and (<b>b</b>), respectively, but with asymmetric eddy momentum and heating only. (<b>g</b>) and (<b>h</b>) as in (<b>a</b>) and (<b>b</b>), respectively, but with residual terms only. The wind vectors (m s<sup>−1</sup>) induced by the total forcing sources overlapped in each panel indicate the radial and vertical wind components (m s<sup>−1</sup>) with their reference vectors given at the lower right corner.</p> ">
Abstract
:1. Introduction
2. Model Configuration and Numerical Experiments
2.1. Model Configuration
2.2. Sensitivity Experiments
3. Simulation Results
3.1. Simulated Track and Intensity
3.2. Simulated Precipitation
4. Characteristics of Surface Layer and Planetary Boundary Layer
4.1. Characteristics of Surface Layer
4.2. Characteristics of Planetary Boundary Layer
5. Dynamic Analyses
5.1. Azimuthal-Mean Typhoon Structure
5.2. AAM Budget Analysis
5.3. Analysis with the Solution of the Extended Sawyer–Eliassen Equation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Surface Layer Parameterization
Appendix A.2. MO Scheme
Appendix A.3. MM5 Scheme
Appendix A.4. MYNN Scheme
References
- Elsberry, R.L.; Lambert, T.D.; Boothe, M.A. Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Weather Forecast. 2007, 22, 747–762. [Google Scholar] [CrossRef]
- Rappaport, E.N.; Jiing, J.-G.; Landsea, C.W.; Murillo, S.T.; Franklin, J.L. The Joint Hurricane Test Bed: Its first decade of tropical cyclone research-to-operations activities reviewed. Bull. Am. Meteorol. Soc. 2012, 93, 371–380. [Google Scholar] [CrossRef]
- Rogers, R.; Aberson, S.; Aksoy, A.; Annane, B.; Black, M.; Cione, J.; Dorst, N.; Dunion, J.; Gamache, J.; Goldenberg, S. NOAA’s hurricane intensity forecasting experiment: A progress report. Bull. Am. Meteorol. Soc. 2013, 94, 859–882. [Google Scholar] [CrossRef]
- Emanuel, K.; Zhang, F. On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci. 2016, 73, 3739–3747. [Google Scholar] [CrossRef]
- Trivedi, D.; Mukhopadhyay, P.; Vaidya, S. Impact of physical parameterization schemes on the numerical simulation of Orissa super cyclone (1999). Mausam 2006, 57, 97–110. [Google Scholar] [CrossRef]
- Reddy, M.V.; Prasad, S.; Krishna, U.; Reddy, K.K. Effect of Cumulus and Microphysical Parameterizations on the JAL Cyclone Prediction; 92.60. Aa; 92.60. hb; 92.60. Wc; NISCAIR-CSIR: New Delhi, India, 2014. [Google Scholar]
- Miglietta, M.M.; Mastrangelo, D.; Conte, D. Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea. Atmos. Res. 2015, 153, 360–375. [Google Scholar] [CrossRef]
- Gao, S.; Chiu, L.S. Surface latent heat flux and rainfall associated with rapidly intensifying tropical cyclones over the western North Pacific. Int. J. Remote Sens. 2010, 31, 4699–4710. [Google Scholar] [CrossRef]
- Peng, C.-H.; Wu, C.-C. The impact of outer-core surface heat fluxes on the convective activities and rapid intensification of tropical cyclones. J. Atmos. Sci. 2020, 77, 3907–3927. [Google Scholar] [CrossRef]
- Shen, L.-Z.; Wu, C.-C.; Judt, F. The role of surface heat fluxes on the size of Typhoon Megi (2016). J. Atmos. Sci. 2021, 78, 1075–1093. [Google Scholar] [CrossRef]
- Shi, R.; Xu, F. Improvement of global forecast of tropical cyclone intensity by spray heat flux and surface roughness. J. Geophys. Res. Atmos. 2024, 129, e2023JD039624. [Google Scholar] [CrossRef]
- Braun, S.A.; Tao, W.-K. Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Weather Rev. 2000, 128, 3941–3961. [Google Scholar] [CrossRef]
- Chen, X. How do planetary boundary layer schemes perform in hurricane conditions: A comparison with large-eddy simulations. J. Adv. Model. Earth Syst. 2022, 14, e2022MS003088. [Google Scholar] [CrossRef]
- Ruan, Z.; Li, J.; Li, F.; Lin, W. Effects of local and non-local closure PBL schemes on the simulation of Super Typhoon Mangkhut (2018). Front. Earth Sci. 2022, 16, 277–290. [Google Scholar] [CrossRef]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.; Duda, M.; Barker, D. A Description of the Advanced Research WRF Model Version 4.3; No. NCAR/TN556+ STR; National Center for Atmospheric Research: Boulder, CO, USA, 2021. [Google Scholar]
- Tastula, E.M.; Galperin, B.; Sukoriansky, S.; Luhar, A.; Anderson, P. The importance of surface layer parameterization in modeling of stable atmospheric boundary layers. Atmos. Sci. Lett. 2015, 16, 83–88. [Google Scholar] [CrossRef]
- Riehl, H. Tropical Meteorology; McGraw-Hill: New York, NY, USA, 1954; Volume 392. [Google Scholar]
- Emanuel, K.A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 1986, 43, 585–605. [Google Scholar] [CrossRef]
- Ma, Z.; Fei, J.; Huang, X.; Cheng, X. Contributions of surface sensible heat fluxes to tropical cyclone. Part I: Evolution of tropical cyclone intensity and structure. J. Atmos. Sci. 2015, 72, 120–140. [Google Scholar] [CrossRef]
- Gao, S.; Jia, S.; Wan, Y.; Li, T.; Zhai, S.; Shen, X. The role of latent heat flux in tropical cyclogenesis over the western North Pacific: Comparison of developing versus non-developing disturbances. J. Mar. Sci. Eng. 2019, 7, 28. [Google Scholar] [CrossRef]
- French, J.R.; Drennan, W.M.; Zhang, J.A.; Black, P.G. Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci. 2007, 64, 1089–1102. [Google Scholar] [CrossRef]
- Jarosz, E.; Mitchell, D.A.; Wang, D.W.; Teague, W.J. Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science 2007, 315, 1707–1709. [Google Scholar] [CrossRef]
- Zhang, J.A.; Black, P.G.; French, J.R.; Drennan, W.M. First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Donelan, M.; Haus, B.K.; Reul, N.; Plant, W.; Stiassnie, M.; Graber, H.; Brown, O.B.; Saltzman, E. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Haus, B.K.; Jeong, D.; Donelan, M.A.; Zhang, J.A.; Savelyev, I. Relative rates of sea-air heat transfer and frictional drag in very high winds. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Liu, W.T.; Katsraos, K.B.; Businger, J.A. Bulk Parameterization of Air-Sea Exchanges of Heat and Water Vapor including the Molecular Constrafnts at the Interface. J. Atmos. Sci. 1979, 36, 1722–1735. [Google Scholar] [CrossRef]
- Smith, S.D. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res. Ocean. 1988, 93, 15467–15472. [Google Scholar] [CrossRef]
- Coronel, R.; Sawada, M.; Iwasaki, T. Impacts of surface drag coefficient and planetary boundary layer schemes on the structure and energetics of typhoon megi (2010) during intensification. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 55–73. [Google Scholar] [CrossRef]
- Ming, J.; Zhang, J.A. Effects of surface flux parameterization on the numerically simulated intensity and structure of Typhoon Morakot (2009). Adv. Atmos. Sci. 2016, 33, 58–72. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, J. Impact of surface layer parameterizations on simulated sea breeze precipitation over the Hainan Island. Chin. J. Geophys. 2019, 62, 32–48. [Google Scholar]
- Shin, H.H.; Hong, S.-Y. Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteorol. 2011, 139, 261–281. [Google Scholar] [CrossRef]
- Ma, X.; Li, J.; Pang, S.; Guo, T.; Ding, C. Influence of surface layer schemes on tropical cyclone Hato (2017) intensity. J. Atmos. Sol.-Terr. Phys. 2023, 250, 106110. [Google Scholar] [CrossRef]
- Lin, S.-J.; Chou, K.-H. The Lightning Distribution of Tropical Cyclones over the Western North Pacific. Mon. Weather Rev. 2020, 148, 4415–4434. [Google Scholar] [CrossRef]
- Zhang, D.-L.; Liu, Y.; Yau, M. A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Weather Rev. 2001, 129, 92–107. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Juan, T.-C.; Kuo, H.-C.; Chen, J.-H. Track deflection of Typhoon Maria (2018) during a westbound passage offshore of northern Taiwan: Topographic influence. Mon. Weather Rev. 2020, 148, 4519–4544. [Google Scholar] [CrossRef]
- Shapiro, L.J.; Willoughby, H.E. The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci. 1982, 39, 378–394. [Google Scholar] [CrossRef]
- Vigh, J.L.; Schubert, W.H. Rapid development of the tropical cyclone warm core. J. Atmos. Sci. 2009, 66, 3335–3350. [Google Scholar] [CrossRef]
- Kuo, H.-C.; Tsujino, S.; Huang, C.-C.; Wang, C.-C.; Tsuboki, K. Diagnosis of the dynamic efficiency of latent heat release and the rapid intensification of Supertyphoon Haiyan (2013). Mon. Weather Rev. 2019, 147, 1127–1147. [Google Scholar] [CrossRef]
- Bui, H.H.; Smith, R.K.; Montgomery, M.T.; Peng, J. Balanced and unbalanced aspects of tropical cyclone intensification. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2009, 135, 1715–1731. [Google Scholar] [CrossRef]
- Smith, R.K.; Montgomery, M.T. Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci. 2015, 72, 3020–3031. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Smith, R.K. Paradigms for tropical cyclone intensification. Aust. Meteorol. Oceanogr. J. 2014, 64, 37–66. [Google Scholar] [CrossRef]
- Heng, J.; Wang, Y.; Zhou, W. Revisiting the balanced and unbalanced aspects of tropical cyclone intensification. J. Atmos. Sci. 2017, 74, 2575–2591. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Persing, J. Does balance dynamics well capture the secondary circulation and spinup of a simulated hurricane? J. Atmos. Sci. 2021, 78, 75–95. [Google Scholar] [CrossRef]
- Ji, D.; Qiao, F. Does Extended Sawyer–Eliassen Equation Effectively Capture the Secondary Circulation of a Simulated Tropical Cyclone? J. Atmos. Sci. 2023, 80, 871–888. [Google Scholar] [CrossRef]
- Nguyen, T.-C.; Huang, C.-Y. Investigation on the Intensification of Supertyphoon Yutu (2018) Based on Symmetric Vortex Dynamics Using the Sawyer–Eliassen Equation. Atmosphere 2023, 14, 1683. [Google Scholar] [CrossRef]
- Paulson, C.A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. (1962–1982) 1970, 9, 857–861. [Google Scholar] [CrossRef]
- Dyer, A.; Hicks, B. Flux-gradient relationships in the constant flux layer. Q. J. R. Meteorol. Soc. 1970, 96, 715–721. [Google Scholar] [CrossRef]
- Janjić, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 151, e187. [Google Scholar]
- Janjić, Z. The surface layer in the NCEP Eta Model. In Proceedings of the Preprints, 11th Conference on Numerical Weather Prediction, Norfolk, VA, USA, 19–23 August 1996; p. 355. [Google Scholar]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 895–912. [Google Scholar] [CrossRef]
- Olson, J.B.; Kenyon, J.S.; Angevine, W.; Brown, J.M.; Pagowski, M.; Sušelj, K. A Description of the MYNN-EDMF Scheme and the Coupling to other Components in WRF–ARW; Earth System Research Laboratory Global Systems Division: Boulder, CO, USA, 2019. [Google Scholar]
- Kain, J.S.; Fritsch, J.M. Convective parameterization for mesoscale models: The Kain-Fritsch scheme. In The Representation of Cumulus Convection in Numerical Models; Springer: Berlin/Heidelberg, Germany, 1993; pp. 165–170. [Google Scholar]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Chen, S.-H.; Sun, W.-Y. A one-dimensional time dependent cloud model. J. Meteorol. Soc. Jpn. Ser. II 2002, 80, 99–118. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound. Layer Meteorol. 2006, 119, 397–407. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, American Meteorological Society, Seattle, WA, USA, 14 January 2004; pp. 11–15. [Google Scholar]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Emanuel, K.A. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci. 1995, 52, 3969–3976. [Google Scholar] [CrossRef]
- Nystrom, R.G.; Judt, F. The consequences of surface-exchange coefficient uncertainty on an otherwise highly predictable major hurricane. Mon. Weather Rev. 2022, 150, 2073–2089. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Smith, R.K.; Nguyen, S.V. Sensitivity of tropical-cyclone models to the surface drag coefficient. Q. J. R. Meteorol. Soc. 2010, 136, 1945–1953. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rogers, R.F.; Nolan, D.S.; Marks, F.D. On the characteristic height scales of the hurricane boundary layer. Mon. Weather Rev. 2011, 139, 2523–2535. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.A.; Alaka, G.J., Jr.; Wu, K.; Mehra, A.; Tallapragada, V. A Statistical Analysis of High-Frequency Track and Intensity Forecasts from NOAA’s Operational Hurricane Weather Research and Forecasting (HWRF) Modeling System. Mon. Weather Rev. 2021, 149, 3325–3339. [Google Scholar] [CrossRef]
- Zhang, D.L.; Chen, H. Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Zilitinkevich, S. Non-local turbulent transport: Pollution dispersion aspects of coherent structure of connective flows. WIT Trans. Ecol. Environ. 2024, 9, 53–60. [Google Scholar]
- Janić, Z.I. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model; NOAA: Silver Spring, MA, USA, 2001. [Google Scholar]
- Webb, E.K. Profile relationships: The log-linear range, and extension to strong stability. Q. J. R. Meteorol. Soc. 1970, 96, 67–90. [Google Scholar] [CrossRef]
- Beljaars, A.C. The parametrization of surface fluxes in large-scale models under free convection. Q. J. R. Meteorol. Soc. 1995, 121, 255–270. [Google Scholar]
- Deardorff, J.W. Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci. 1970, 27, 1211–1213. [Google Scholar] [CrossRef]
- Garratt, J.R. The atmospheric boundary layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Yang, K.; Koike, T.; Fujii, H.; Tamagawa, K.; Hirose, N. Improvement of surface flux parametrizations with a turbulence-related length. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2002, 128, 2073–2087. [Google Scholar] [CrossRef]
- Yang, K.; Koike, T.; Ishikawa, H.; Kim, J.; Li, X.; Liu, H.; Liu, S.; Ma, Y.; Wang, J. Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization. J. Appl. Meteorol. Climatol. 2008, 47, 276–290. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Zhou, D.; Qin, J.; Guo, X. Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J. Hydrometeorol. 2010, 11, 995–1006. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Davis, C.; Wang, W.; Chen, S.S.; Chen, Y.; Corbosiero, K.; DeMaria, M.; Dudhia, J.; Holland, G.; Klemp, J.; Michalakes, J. Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Weather Rev. 2008, 136, 1990–2005. [Google Scholar] [CrossRef]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Miller, S.D.; Mahrt, L.; Vickers, D.; Hersbach, H. On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar] [CrossRef]
- Olson, J.B.; Smirnova, T.; Kenyon, J.S.; Turner, D.D.; Brown, J.M.; Zheng, W.; Green, B.W. A Description of the MYNN Surface-Layer Scheme; NOAA: Silver Spring, MA, USA, 2021. [Google Scholar]
Physics Schemes | Schemes | ||
---|---|---|---|
CTL | MM5 | MYNN | |
Surface layer physics scheme | MO | MM5 | MYNN |
Microphysics parameterization scheme | Lin | ||
Cumulus parameterization scheme | Kain–Fritsch | ||
Planetary Boundary-Layer parameterizations | MYNN | ||
Shortwave scheme | Dudhia | ||
Longwave scheme | RRTM |
Experiments | R | BIAS (m s−1) | RMSE (m s−1) |
---|---|---|---|
CTL | 0.995 | −0.412 | 0.849 |
MM5 | 0.930 | −4.270 | 5.378 |
MYNN | 0.932 | −5.359 | 5.745 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, T.-H.; Huang, C.-Y.; Nguyen, T.-C. Effects of Surface Layer Physics Schemes on the Simulated Intensity and Structure of Typhoon Rai (2021). Atmosphere 2024, 15, 1140. https://doi.org/10.3390/atmos15091140
Hoang T-H, Huang C-Y, Nguyen T-C. Effects of Surface Layer Physics Schemes on the Simulated Intensity and Structure of Typhoon Rai (2021). Atmosphere. 2024; 15(9):1140. https://doi.org/10.3390/atmos15091140
Chicago/Turabian StyleHoang, Thi-Huyen, Ching-Yuang Huang, and Thi-Chinh Nguyen. 2024. "Effects of Surface Layer Physics Schemes on the Simulated Intensity and Structure of Typhoon Rai (2021)" Atmosphere 15, no. 9: 1140. https://doi.org/10.3390/atmos15091140
APA StyleHoang, T. -H., Huang, C. -Y., & Nguyen, T. -C. (2024). Effects of Surface Layer Physics Schemes on the Simulated Intensity and Structure of Typhoon Rai (2021). Atmosphere, 15(9), 1140. https://doi.org/10.3390/atmos15091140