ROS-Based Unmanned Mobile Robot Platform for Agriculture
<p>The greenhouse environment. (<b>a</b>) corridor; (<b>b</b>) corridor with machines; (<b>c</b>) rails; (<b>d</b>) top view of smartfarm.</p> "> Figure 2
<p>Chassis of the 2WD mobile robot model. (1) frame, (2) cover, (3) cover, (4) cover panel, (5) cover panel, (6) motor, (7) bumper, (8) slide block, (10) sensor cover, (11) battery.</p> "> Figure 3
<p>A mobile robot that moves along smart farm rails and passageways.</p> "> Figure 4
<p>Rail wheel drive using chain belt type.</p> "> Figure 5
<p>System structure.</p> "> Figure 6
<p>Proposed mobile robot system.</p> "> Figure 7
<p>Checkerboard images for camera calibration.</p> "> Figure 8
<p>Corresponding points by selecting the four corner points of the checkerboard.</p> "> Figure 9
<p>Virtural private network.</p> "> Figure 10
<p>Agriculture mobile robot.</p> "> Figure 11
<p>Load testing in a real environment.</p> "> Figure 12
<p>Camera-LiDAR Projection.</p> "> Figure 13
<p>The proposed robot movement. (<b>a</b>) forward move; (<b>b</b>) backward move; (<b>c</b>) rotation in place; (<b>d</b>) rotation by the angle θ.</p> ">
Abstract
:1. Introduction
2. Autonomous Mobile Robot Platform
2.1. Analysis of the Greenhouse Environment
2.2. WD Mobile Robot Chassis
2.3. Sensors and System Setup
3. Mobile Robot System
3.1. ROS Based Mobile Robot System
3.2. Mobile Robot Control
3.3. Cam–Lidar Calibration
3.4. Virtual Private Network
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Štefek, A.; Pham, V.T.; Krivanek, V.; Pham, K.L. Optimization of Fuzzy Logic Controller Used for a Differential Drive Wheeled Mobile Robot. Appl. Sci. 2021, 11, 6023. [Google Scholar] [CrossRef]
- Rubio, F.; Valero, F.; Llopis-Albert, C. A review of mobile robots: Concepts, methods, theoretical framework, and applications. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419839596. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Gao, L.; Zhu, Y. Study on control schemes of flexible steering system of a multi-axle all-wheel-steering robot. Adv. Mech. Eng. 2016, 8, 1687814016651556. [Google Scholar] [CrossRef] [Green Version]
- Shamshiri, R.R.; Weltzien, C.; Hameed, I.A.; Yule, J.I.; Grift, E.T.; Balasundram, S.K.; Pitonakova, L.; Ahmad, D.; Chowdhary, G. Research and development in agricultural robotics: A perspective of digital farming. Int. J. Agric. Biol. Eng. 2018, 11, 1–14. [Google Scholar] [CrossRef]
- Bogue, R. Growth in e-commerce boosts innovation in the warehouse robot market. Ind. Robot Int. J. 2016, 43, 583–587. [Google Scholar] [CrossRef]
- Asafa, T.B.; Afonja, T.M.; Olaniyan, E.A.; Alade, H.O. Development of a vacuum cleaner robot. Alex. Eng. J. 2018, 57, 2911–2920. [Google Scholar] [CrossRef]
- Peleka, G.; Kargakos, A.; Skartados, E.; Kostavelis, I.; Giakoumis, D.; Sarantopoulos, I.; Doulgeri, Z.; Foukarakis, M.; Antona, M.; Hirche, S.; et al. Ramcip-a service robot for mci patients at home. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1–9. [Google Scholar]
- Klancar, G.; Zdesar, A.; Blazic, S.; Skrjanc, I. Wheeled Mobile Robotics: From Fundamentals towards Autonomous Systems; Butterworth Heinemann: Oxford, UK, 2017. [Google Scholar]
- Bergerman, M.; Billingsley, J.; Reid, J.; van Henten, E. Robotics in agriculture and forestry. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1463–1492. [Google Scholar]
- Wibowo, T.S.; Sulistijono, I.A.; Risnumawan, A. End-to-end coconut harvesting robot. In Proceedings of the 18th IEEE International Electronics Symposium (IES), Denpasar, Indonesia, 29–30 September 2016; pp. 444–449. [Google Scholar]
- Feng, Q.; Wang, X.; Zheng, W.; Qiu, Q.; Jiang, K. New strawberry harvesting robot for elevated-trough culture. Int. J. Agric. Biol. Eng. 2012, 5, 1–8. [Google Scholar]
- Zhao, D.; Lv, J.; Ji, W.; Zhang, Y. Design and control of an apple harvesting robot. Biosyst. Eng. 2011, 110, 112–122. [Google Scholar]
- Barth, R.; Hemming, J.; Van Henten, E.J. Angle estimation between plant parts for grasp optimisation in harvest robots. Biosyst. Eng. 2019, 183, 26–46. [Google Scholar] [CrossRef]
- Hemming, J.; Ruizendaal, J.; Hofstee, J.W.; van Henten, E.J. Fruit detectability analysis for different camera positions in sweet-pepper. Sensors 2014, 14, 6032–6044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, Y.; Liu, G.; Feng, J. Location of apples in trees using stereoscopic vision. Comput. Electron. Agric. 2015, 112, 68–74. [Google Scholar] [CrossRef]
- Dos Santos, F.N.; Sobreira, H.M.P.; Campos, D.F.B.; Morais, R.; Moreira, A.P.G.M.; Contente, O.M.S. Towards a reliable monitoring robot for mountain vineyards. In Proceedings of the 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, Vila Real, Potugal, 8–10 April 2015; pp. 37–43. [Google Scholar] [CrossRef]
- Rizk, H.; Habib, M.K. Robotized early plant health monitoring system. In Proceedings of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018. [Google Scholar]
- Rey, B.; Aleixos, N.; Cubero, S.; Blasco, J. A field robot to detect olive trees infected by Xylella fastidiosa using proximal sensing. Remote Sens. 2019, 11, 221. [Google Scholar] [CrossRef] [Green Version]
- Santhi, P.V.; Kapileswar, N.; Chenchela, V.K.; Prasad, C.V.S. Sensor and vision based autonomous AGRIBOT for sowing seeds. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics & Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 242–245. [Google Scholar] [CrossRef]
- Van Henten, E.J.; Van Tuijl, B.A.J.; Hoogakker, G.J.; Van Der Weerd, M.J.; Hemming, J.; Kornet, J.G.; Bontsema, J. An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system. Biosyst. Eng. 2006, 94, 317–323. [Google Scholar] [CrossRef]
- Ota, T.; Bontsema, J.; Hayashi, S.; Kubota, K.; Van Henten, E.J.; Van Os, E.A.; Ajiki, K. Development of a cucumber leaf picking device for greenhouse production. Biosyst. Eng. 2007, 98, 381–390. [Google Scholar] [CrossRef]
- Strisciuglio, N.; Tylecek, R.; Blaich, M.; Petkov, N.; Biber, P.; Hemming, J.; van Henten, E.; Sattler, T.; Pollefeys, M.; Gevers, T.; et al. Trimbot2020: An outdoor robot for automatic gardening. In Proceedings of the 50th International Symposium on Robotics, Munich, Germany, 20–21 June 2018; pp. 1–6. [Google Scholar]
- Stączek, P.; Pizoń, J.; Danilczuk, W.; Gola, A. A digital twin approach for the improvement of an autonomous mobile robots (AMR’s) operating environment—A case study. Sensors 2021, 21, 7830. [Google Scholar] [CrossRef]
- Lim, J.Z.; Ng, D.W.K. Cloud based implementation of ROS through VPN. In Proceedings of the 2019 7th International Conference on Smart Computing & Communications (ICSCC), Sarawak, Malaysia, 28–30 June 2019. [Google Scholar]
- Koubaa, A. Robot Operating System (ROS) the Complete Reference (Volume 1); Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. Ros: An open-source robot operating system. ICRA Workshop Open Source Softw. 2009, 3, 5. [Google Scholar]
- Mason, A.G. (Ed.) Cisco Secure Virtual Private Networks; Cisco Press: Indianapolis, IN, USA, 2001. [Google Scholar]
- McKerrow, P.J. Introduction to Robotics; Addison-Wesley Publishing Company: Boston, MA, USA, 1991. [Google Scholar]
- Kim, E.S.; Park, S.Y. Extrinsic calibration between camera and LiDAR sensors by matching multiple 3D plane. Sensors 2019, 20, 52. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Bradski, G. The OpenCV Library. Dr Dobb’s J. Softw. Tools 2000, 25, 120–123. [Google Scholar]
- Crist, E.F.; Keijser, J.J. Mastering OpenVPN; PACKT Publishing: Birmingham, UK, 2015. [Google Scholar]
Parameter | Value |
---|---|
Cultivation area | 24,300 m2 |
Length of rail | 100 m |
Number of rails | 150 ea. |
Width of the corridor | 3 m |
Parameters | Configuration |
---|---|
Chassis | 2WD mobile robot |
Motor controller | FIM2360 |
Battery | 12 V ×2 |
Motor | AC Induction Motor (24 V) ×2 |
Board | Jetson nano board ×2 |
Router | CNR-L500 (LTE) |
OS | Ubuntu 18.04 |
Camera | YOITCH webcam |
Lidar | Velodyne vlp-16 |
ROS | Melodic |
Program language | Python3 |
Weight [kg] | Gap between the Ground and the Robot [mm] |
---|---|
0 | 35 |
50 | 35 |
100 | 35 |
150 | 35 |
200 | 35 |
250 | 35 |
300 | 35 |
350 | 35 |
400 | 35 |
450 | 35 |
Weight [kg] | Gap between the Ground and the Robot [mm] |
---|---|
0 | 35 |
50 | 35 |
100 | 35 |
150 | 35 |
200 | 35 |
250 | 35 |
300 | 35 |
350 | 35 |
400 | 34.8 |
450 | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, E.-T.; Im, D.-Y. ROS-Based Unmanned Mobile Robot Platform for Agriculture. Appl. Sci. 2022, 12, 4335. https://doi.org/10.3390/app12094335
Baek E-T, Im D-Y. ROS-Based Unmanned Mobile Robot Platform for Agriculture. Applied Sciences. 2022; 12(9):4335. https://doi.org/10.3390/app12094335
Chicago/Turabian StyleBaek, Eu-Tteum, and Dae-Yeong Im. 2022. "ROS-Based Unmanned Mobile Robot Platform for Agriculture" Applied Sciences 12, no. 9: 4335. https://doi.org/10.3390/app12094335
APA StyleBaek, E. -T., & Im, D. -Y. (2022). ROS-Based Unmanned Mobile Robot Platform for Agriculture. Applied Sciences, 12(9), 4335. https://doi.org/10.3390/app12094335