Egg Protein Compositions over Embryonic Development in Haemaphysalis hystricis Ticks
<p>SDS-PAGE analysis of protein extract from <span class="html-italic">H. hystricis</span> eggs. A total of 80 μg of protein extract was loaded per sample. Lane M represents the 15–250 kDa molecular weight marker. D1, D7, D14, and D21 correspond to eggs incubated for 1, 7, 14, and 21 days, respectively. Bands 1–12 indicate the protein bands excised for further analysis.</p> "> Figure 2
<p>Top 4 most prominent proteins identified in 12 bands from day-one eggs.</p> "> Figure 3
<p>Analysis of protein dynamics in <span class="html-italic">H. hystricis</span> tick eggs across different incubation days. Each sample was spiked with the stable isotope iRT KIT peptide as an internal standard. Tryptic peptides were analyzed using the nLC-1200 system. Protein abundances at 7, 14, and 21 days of incubation were normalized to the levels observed at day. D1, D7, D14, and D21 correspond to eggs incubated for 1, 7, 14, and 21 days, respectively.</p> ">
1. Introduction
2. Materials and Methods
2.1. Collection of Ticks and Eggs
2.2. Egg Protein Extraction
2.3. SDS-PAGE from Four Stages Egg
2.4. Protein Bands Cutting and Protein Re-Collection
2.5. LC-MS/MS for First-Day Eggs and Re-Collected Proteins from Bands
2.6. Chromatographic Fractionation
2.7. PRM-Dynamic Changes in Forty Egg Proteins During Egg Development
2.8. MS Data Analysis
3. Results and Discussion
3.1. Protein Expression Profile at Different Egg Developmental Stages
3.2. Identification of High-Confidence Polypeptides and Their Dynamics Changes in Egg Development
3.3. Classification and Potential Function of Egg Proteins
3.4. Vgs
3.5. Lipocalins
3.6. Cysteine Proteases
3.7. Aspartic Proteases
3.8. GSTs
3.9. Catalase
3.10. Peroxiredoxins(Prx)
3.11. Dehydrogenase
3.12. Hydrolases
3.13. AMP
3.14. Serpin
3.15. Kunitz Domain-Containing Protein
3.16. Neutrophil Elastase Inhibitors (NEI)
3.17. HSP
3.18. Cytoskeletal Protein and Other Proteins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chao, L.L.; Hsieh, C.K.; Ho, T.Y.; Shih, C.M. First zootiological survey of hard ticks (Acari: Ixodidae) infesting dogs in northern Taiwan. Exp. Appl. Acarol. 2019, 77, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Yano, S.; Yamamoto, T.; Yamamoto, E.; Miyamoto, T. Ticks (Acari: Ixodidae) from medium-sized to large mammals in Ehime Prefecture, Japan. Exp. Appl. Acarol. 2013, 60, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Khoo, J.J.; Lim, F.S.; Tan, K.K.; Chen, F.S.; Phoon, W.H.; Khor, C.S.; Pike, B.L.; Chang, L.Y.; AbuBakar, S. Detection in Malaysia of a Borrelia sp. From Haemaphysalis hystricis (Ixodida: Ixodidae). J. Med. Entomol. 2017, 54, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Bezerra-Santos, M.A.; de Macedo, L.O.; Nguyen, V.L.; Manoj, R.R.; Laidoudi, Y.; Latrofa, M.S.; Beugnet, F.; Otranto, D. Cercopithifilaria spp. in ticks of companion animals from Asia: New putative hosts and vectors. Ticks Tick Borne Dis. 2022, 13, 101957. [Google Scholar] [CrossRef] [PubMed]
- Jongejan, F.; Su, B.L.; Yang, H.J.; Berger, L.; Bevers, J.; Liu, P.C.; Fang, J.C.; Cheng, Y.W.; Kraakman, C.; Plaxton, N. Molecular evidence for the transovarial passage of Babesia gibsoni in Haemaphysalis hystricis (Acari: Ixodidae) ticks from Taiwan: A novel vector for canine babesiosis. Parasit. Vectors 2018, 11, 134. [Google Scholar] [CrossRef]
- Lu, M.; Tian, J.H.; Yu, B.; Guo, W.P.; Holmes, E.C.; Zhang, Y.Z. Extensive diversity of rickettsiales bacteria in ticks from Wuhan, China. Ticks Tick Borne Dis. 2017, 8, 574–580. [Google Scholar] [CrossRef]
- Zhang, X.; Geng, J.; Du, J.; Wang, Y.; Qian, W.; Zheng, A.; Zou, Z. Molecular Identification of Rickettsia Species in Haemaphysalis Ticks Collected from Southwest China. Vector Borne Zoonotic Dis. 2018, 18, 663–668. [Google Scholar] [CrossRef]
- Lim, F.S.; Khoo, J.J.; Tan, K.K.; Zainal, N.; Loong, S.K.; Khor, C.S.; AbuBakar, S. Bacterial communities in Haemaphysalis, Dermacentor and Amblyomma ticks collected from wild boar of an Orang Asli Community in Malaysia. Ticks Tick Borne Dis. 2020, 11, 101352. [Google Scholar] [CrossRef]
- Khatri-Chhetri, R.; Wang, H.C.; Chen, C.C.; Shih, H.C.; Liao, H.C.; Sun, C.M.; Khatri-Chhetri, N.; Wu, H.Y.; Pei, K.J. Surveillance of ticks and associated pathogens in free-ranging Formosan pangolins (Manis pentadactyla pentadactyla). Ticks Tick Borne Dis. 2016, 7, 1238–1244. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Wang, L.; Deng, L.; Wei, M.; Wu, K.; Huang, S.; Li, G.; Huang, Y.; Zhang, H.; et al. Characterization of the complete mitogenome sequence of the giant panda tick Haemaphysalis hystricis. Mitochondrial DNA B Resour. 2020, 5, 1191–1193. [Google Scholar] [CrossRef]
- Thekisoe, O.M.; Honda, T.; Fujita, H.; Battsetseg, B.; Hatta, T.; Fujisaki, K.; Sugimoto, C.; Inoue, N. A trypanosome species isolated from naturally infected Haemaphysalis hystricis ticks in Kagoshima Prefecture, Japan. Parasitology 2007, 134, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Takada, N.; Fujita, H.; Yano, Y.; Oikawa, Y.; Mahara, F. Vectors of Japanese spotted fever. Jpn. J. Infect. Dis. 1992, 66, 1218–1225, (In Japanese with English Summary). [Google Scholar]
- Chiang, P.S.; Lai, Y.W.; Chung, H.H.; Chia, Y.T.; Wang, C.C.; Teng, H.J.; Chen, S.L. First molecular detection of a novel Babesia species from Haemaphysalis hystricis in Taiwan. Ticks Tick Borne Dis. 2024, 15, 102284. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.L.; Cheng, T.Y. A survey of proteins in midgut contents of the tick, Haemaphysalis flava, by proteome and transcriptome analysis. Exp. Appl. Acarol. 2020, 80, 269–287. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cheng, T.Y.; He, X.M. Proteomic profiling of the midgut contents of Haemaphysalis flava. Ticks Tick Borne Dis. 2018, 9, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cheng, R.; Mao, S.Q.; Duan, D.Y.; Feng, L.L.; Cheng, T.Y. Saliva proteome of partially- and fully-engorged adult female Haemaphysalis flava ticks. Vet. Parasitol. 2023, 318, 109933. [Google Scholar] [CrossRef]
- Cheng, R.; Li, D.; Duan, D.Y.; Parry, R.; Cheng, T.Y.; Liu, L. Egg protein profile and dynamics during embryogenesis in Haemaphysalis flava ticks. Ticks Tick Borne Dis. 2023, 14, 102180. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, R.; Liu, X.Y.; Mihaljica, D.; Cheng, T.Y. The effect of feeding on different hosts on the egg proteins in Haemaphysalis qinghaiensis tick. Parasitol. Res. 2024, 123, 197. [Google Scholar] [CrossRef]
- Sorgine, M.H.; Logullo, C.; Zingali, R.B.; Paiva-Silva, G.O.; Juliano, L.; Oliveira, P.L. A heme-binding aspartic proteinase from the eggs of the hard tick Boophilus microplus. J. Biol. Chem. 2000, 275, 28659–28665. [Google Scholar] [CrossRef]
- Fagotto, F. Yolk degradation in tick eggs: I. Occurrence of a cathepsin L-like acid proteinase in yolk spheres. Arch. Insect Biochem. Physiol. 1990, 14, 217–235. [Google Scholar] [CrossRef]
- Logullo, C.; Vaz Ida, S.; Sorgine, M.H.; Paiva-Silva, G.O.; Faria, F.S.; Zingali, R.B.; De Lima, M.F.; Abreu, L.; Oliveira, E.F.; Alves, E.W.; et al. Isolation of an aspartic proteinase precursor from the egg of a hard tick, Boophilus microplus. Parasitology 1998, 116 Pt 6, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Freitas, D.R.; Rosa, R.M.; Moraes, J.; Campos, E.; Logullo, C.; Da Silva Vaz, I., Jr.; Masuda, A. Relationship between glutathione S-transferase, catalase, oxygen consumption, lipid peroxidation and oxidative stress in eggs and larvae of Boophilus microplus (Acarina: Ixodidae). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 146, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Willadsen, P.; McKenna, R.V. Trypsin-chymotrypsin inhibitors from the tick, Boophilus microplus. Aust. J. Exp. Biol. Med. Sci. 1983, 61 Pt 2, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Esteves, E.; Fogaça, A.C.; Maldonado, R.; Silva, F.D.; Manso, P.P.; Pelajo-Machado, M.; Valle, D.; Daffre, S. Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: Cellular localization and temporal expression of microplusin during oogenesis and embryogenesis. Dev. Comp. Immunol. 2009, 33, 913–919. [Google Scholar] [CrossRef]
- Liu, Y.K.; Wang, A.B.; Liu, G.H.; Liu, L.; Cheng, T.Y.; Duan, D.Y. Morphological and molecular biological identification of Haemaphysalis hystricis. Chin. Vet. Sci. 2022, 50, 214–222. [Google Scholar] [CrossRef]
- Ernieenor, F.C.L.; Ernna, G.; Mariana, A. Phenotypic and genotypic identification of hard ticks of the genus Haemaphysalis (Acari: Ixodidae) in Peninsular Malaysia. Exp. Appl. Acarol. 2017, 71, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, M.C.; Leskiw, B.K.; Kaufman, W.R. Antimicrobial activity in the egg wax of the African cattle tick Amblyomma hebraeum (Acari: Ixodidae). Exp. Appl. Acarol. 2006, 39, 297–313. [Google Scholar] [CrossRef]
- Jiang, Z. Biology of Haemaphysalis Hystricis Supino. Acta Entomol. Sin. 1983, 26, 413–418. [Google Scholar]
- Fujisaki, K.; Kitaoka, S.; Morii, T. Comparative observations on some bionomics of Japanese ixodid ticks under laboratory cultural conditions. Natl. Inst. Anim. Health Q. 1976, 16, 122–128. [Google Scholar]
- Wiśniewski, J.R.; Zougman, A.; Mann, M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J. Proteome Res. 2009, 8, 5674–5678. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef] [PubMed]
- Silveira, A.B.; Castro-Santos, J.; Senna, R.; Logullo, C.; Fialho, E.; Silva-Neto, M.A. Tick vitellin is dephosphorylated by a protein tyrosine phosphatase during egg development: Effect of dephosphorylation on VT proteolysis. Insect Biochem. Mol. Biol. 2006, 36, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Z.; He, Y.; Xu, X.; Gao, Z.; Wang, H.; Chen, J.; Liu, J. Purification of vitellin and dynamics of vitellogenesis in the parthenogenetic tick Haemaphysalis longicornis (Acari: Ixodidae). Exp. Appl. Acarol. 2015, 65, 377–388. [Google Scholar] [CrossRef]
- Mans, B.J.; Venter, J.D.; Vrey, P.J.; Louw, A.I.; Neitz, A.W. Identification of putative proteins involved in granule biogenesis of tick salivary glands. Electrophoresis 2001, 22, 1739–1746. [Google Scholar] [CrossRef]
- Mans, B.J.; Louw, A.I.; Neitz, A.W. The major tick salivary gland proteins and toxins from the soft tick, Ornithodoros savignyi, are part of the tick Lipocalin family: Implications for the origins of tick toxicoses. Mol. Biol. Evol. 2003, 20, 1158–1167. [Google Scholar] [CrossRef]
- Mans, B.J.; Andersen, J.F.; Francischetti, I.M.; Valenzuela, J.G.; Schwan, T.G.; Pham, V.M.; Garfield, M.K.; Hammer, C.H.; Ribeiro, J.M. Comparative sialomics between hard and soft ticks: Implications for the evolution of blood-feeding behavior. Insect Biochem. Mol. Biol. 2008, 38, 42–58. [Google Scholar] [CrossRef] [PubMed]
- Francischetti, I.M.; Mans, B.J.; Meng, Z.; Gudderra, N.; Veenstra, T.D.; Pham, V.M.; Ribeiro, J.M. An insight into the sialome of the soft tick, Ornithodorus parkeri. Insect Biochem. Mol. Biol. 2008, 38, 1–21. [Google Scholar] [CrossRef]
- Oleaga, A.; Escudero-Población, A.; Camafeita, E.; Pérez-Sánchez, R. A proteomic approach to the identification of salivary proteins from the argasid ticks Ornithodoros moubata and Ornithodoros erraticus. Insect Biochem. Mol. Biol. 2007, 37, 1149–1159. [Google Scholar] [CrossRef]
- Rodriguez-Valle, M.; Moolhuijzen, P.; Piper, E.K.; Weiss, O.; Vance, M.; Bellgard, M.; Lew-Tabor, A. Rhipicephalus microplus lipocalins (LRMs): Genomic identification and analysis of the bovine immune response using in silico predicted B and T cell epitopes. Int. J. Parasitol. 2013, 43, 739–752. [Google Scholar] [CrossRef]
- Neelakanta, G.; Sultana, H.; Sonenshine, D.E.; Andersen, J.F. Identification and characterization of a histamine-binding lipocalin-like molecule from the relapsing fever tick Ornithodoros turicata. Insect Mol. Biol. 2018, 27, 177–187. [Google Scholar] [CrossRef]
- Paesen, G.C.; Adams, P.L.; Nuttall, P.A.; Stuart, D.L. Tick histamine-binding proteins: Lipocalins with a second binding cavity. Biochim. Biophys. Acta 2000, 1482, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Martín, V.; Manzano-Román, R.; Siles-Lucas, M.; Oleaga, A.; Pérez-Sánchez, R. Cloning, characterization and diagnostic performance of the salivary lipocalin protein TSGP1 from Ornithodoros moubata. Vet. Parasitol. 2011, 178, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Sangamnatdej, S.; Paesen, G.C.; Slovak, M.; Nuttall, P.A. A high affinity serotonin- and histamine-binding lipocalin from tick saliva. Insect Mol. Biol. 2002, 11, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Beaufays, J.; Adam, B.; Decrem, Y.; Prévôt, P.P.; Santini, S.; Brasseur, R.; Brossard, M.; Lins, L.; Vanhamme, L.; Godfroid, E. Ixodes ricinus tick lipocalins: Identification, cloning, phylogenetic analysis and biochemical characterization. PLoS ONE 2008, 3, e3941. [Google Scholar] [CrossRef]
- Beaufays, J.; Adam, B.; Menten-Dedoyart, C.; Fievez, L.; Grosjean, A.; Decrem, Y.; Prévôt, P.P.; Santini, S.; Brasseur, R.; Brossard, M.; et al. Ir-LBP, an ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function. PLoS ONE 2008, 3, e3987. [Google Scholar] [CrossRef]
- Mans, B.J.; Ribeiro, J.M. Function, mechanism and evolution of the moubatin-clade of soft tick lipocalins. Insect Biochem. Mol. Biol. 2008, 38, 841–852. [Google Scholar] [CrossRef]
- Mans, B.J.; Ribeiro, J.M. A novel clade of cysteinyl leukotriene scavengers in soft ticks. Insect Biochem. Mol. Biol. 2008, 38, 862–870. [Google Scholar] [CrossRef]
- Wang, D.; Xu, X.; Lv, L.; Wu, P.; Dong, H.; Xiao, S.; Liu, J.; Hu, Y. Gene cloning, analysis and effect of a new lipocalin homologue from Haemaphysalis longicornis as a protective antigen for an anti-tick vaccine. Vet. Parasitol. 2021, 290, 109358. [Google Scholar] [CrossRef]
- Barrett, A.J. Classification of peptidases. Methods Enzymol. 1994, 244, 1–15. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Barrett, A.J. Evolutionary families of peptidases. Biochem. J. 1993, 290 Pt 1, 205–218. [Google Scholar] [CrossRef]
- Sajid, M.; McKerrow, J.H. Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol. 2002, 120, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Sojka, D.; Hajdusek, O.; Dvorák, J.; Sajid, M.; Franta, Z.; Schneider, E.L.; Craik, C.S.; Vancová, M.; Buresová, V.; Bogyo, M.; et al. IrAE: An asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol. 2007, 37, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Horn, M.; Nussbaumerová, M.; Sanda, M.; Kovárová, Z.; Srba, J.; Franta, Z.; Sojka, D.; Bogyo, M.; Caffrey, C.R.; Kopácek, P.; et al. Hemoglobin digestion in blood-feeding ticks: Mapping a multipeptidase pathway by functional proteomics. Chem. Biol. 2009, 16, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Franta, Z.; Sojka, D.; Frantova, H.; Dvorak, J.; Horn, M.; Srba, J.; Talacko, P.; Mares, M.; Schneider, E.; Craik, C.S.; et al. IrCL1—The haemoglobinolytic cathepsin L of the hard tick, Ixodes ricinus. Int. J. Parasitol. 2011, 41, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Renard, G.; Garcia, J.F.; Cardoso, F.C.; Richter, M.F.; Sakanari, J.A.; Ozaki, L.S.; Termignoni, C.; Masuda, A. Cloning and functional expression of a Boophilus microplus cathepsin L-like enzyme. Insect Biochem. Mol. Biol. 2000, 30, 1017–1026. [Google Scholar] [CrossRef]
- Estrela, A.B.; Seixas, A.; Teixeira Vde, O.; Pinto, A.F.; Termignoni, C. Vitellin- and hemoglobin-digesting enzymes in Rhipicephalus (Boophilus) microplus larvae and females. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 157, 326–335. [Google Scholar] [CrossRef]
- Mendiola, J.; Alonso, M.; Marquetti, M.C.; Finlay, C. Boophilus microplus: Multiple proteolytic activities in the midgut. Exp. Parasitol. 1996, 82, 27–33. [Google Scholar] [CrossRef]
- Nascimento-Silva, M.C.; Leal, A.T.; Daffre, S.; Juliano, L.; da Silva Vaz, I., Jr.; Paiva-Silva Gde, O.; Oliveira, P.L.; Sorgine, M.H. BYC, an atypical aspartic endopeptidase from Rhipicephalus (Boophilus) microplus eggs. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 149, 599–607. [Google Scholar] [CrossRef]
- Seixas, A.; Leal, A.T.; Nascimento-Silva, M.C.; Masuda, A.; Termignoni, C.; da Silva Vaz, I., Jr. Vaccine potential of a tick vitellin-degrading enzyme (VTDCE). Vet. Immunol. Immunopathol. 2008, 124, 332–340. [Google Scholar] [CrossRef]
- Qiu, Z.X.; Li, Y.; Li, M.M.; Wang, W.Y.; Zhang, T.T.; Liu, J.Z. Investigation of three enzymes and their roles in the embryonic development of parthenogenetic Haemaphysalis longicornis. Parasit. Vectors 2020, 13, 46. [Google Scholar] [CrossRef]
- Zhang, T.T.; Qiu, Z.X.; Li, Y.; Wang, W.Y.; Li, M.M.; Guo, P.; Liu, J.Z. The mRNA expression and enzymatic activity of three enzymes during embryonic development of the hard tick Haemaphysalis longicornis. Parasit. Vectors 2019, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Galay, R.L.; Umemiya-Shirafuji, R.; Mochizuki, M.; Fujisaki, K.; Tanaka, T. Iron metabolism in hard ticks (Acari: Ixodidae): The antidote to their toxic diet. Parasitol. Int. 2015, 64, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.W.; Hutchinson, A.T.; Dalton, J.P.; Donnelly, S. Peroxiredoxin: A central player in immune modulation. Parasite Immunol. 2010, 32, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, E.P.; Kusakisako, K.; Talactac, M.R.; Galay, R.L.; Hatta, T.; Fujisaki, K.; Tsuji, N.; Tanaka, T. Glutathione S-transferases play a role in the detoxification of flumethrin and chlorpyrifos in Haemaphysalis longicornis. Parasit. Vectors 2018, 11, 460. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Gao, Z.; Ji, X.; Wang, K.; Zhang, S.; Shi, Y.; Song, X.; Yu, Z.; Yang, X. The diverse functions of Mu-class Glutathione S-transferase HrGSTm1 during the development of Hyalomma rufipes with a focus on the detoxification metabolism of cyhalothrin. Parasit. Vectors 2024, 17, 1. [Google Scholar] [CrossRef]
- Salinas, A.E.; Wong, M.G. Glutathione S-transferases--a review. Curr. Med. Chem. 1999, 6, 279–309. [Google Scholar] [CrossRef]
- Hernandez, E.P.; Talactac, M.R.; Vitor, R.J.S.; Yoshii, K.; Tanaka, T. An Ixodes scapularis glutathione S-transferase plays a role in cell survival and viability during Langat virus infection of a tick cell line. Acta Trop. 2021, 214, 105763. [Google Scholar] [CrossRef]
- Citelli, M.; Lara, F.A.; da Silva Vaz, I., Jr.; Oliveira, P.L. Oxidative stress impairs heme detoxification in the midgut of the cattle tick, Rhipicephalus (Boophilus) microplus. Mol. Biochem. Parasitol. 2007, 151, 81–88. [Google Scholar] [CrossRef]
- Kumar, D.; Budachetri, K.; Meyers, V.C.; Karim, S. Assessment of tick antioxidant responses to exogenous oxidative stressors and insight into the role of catalase in the reproductive fitness of the Gulf Coast tick, Amblyomma maculatum. Insect Mol. Biol. 2016, 25, 283–294. [Google Scholar] [CrossRef]
- Budachetri, K.; Kumar, D.; Karim, S. Catalase is a determinant of the colonization and transovarial transmission of Rickettsia parkeri in the Gulf Coast tick Amblyomma maculatum. Insect Mol. Biol. 2017, 26, 414–419. [Google Scholar] [CrossRef]
- Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Kusakisako, K.; Galay, R.L.; Umemiya-Shirafuji, R.; Hernandez, E.P.; Maeda, H.; Talactac, M.R.; Tsuji, N.; Mochizuki, M.; Fujisaki, K.; Tanaka, T. 2-Cys peroxiredoxin is required in successful blood-feeding, reproduction, and antioxidant response in the hard tick Haemaphysalis longicornis. Parasit. Vectors 2016, 9, 457. [Google Scholar] [CrossRef]
- Kusakisako, K.; Fujisaki, K.; Tanaka, T. The multiple roles of peroxiredoxins in tick blood feeding. Exp. Appl. Acarol. 2018, 75, 269–280. [Google Scholar] [CrossRef]
- Kusakisako, K.; Morokuma, H.; Talactac, M.R.; Hernandez, E.P.; Yoshii, K.; Tanaka, T. A Peroxiredoxin From the Haemaphysalis longicornis Tick Affects Langat Virus Replication in a Hamster Cell Line. Front. Cell Infect. Microbiol. 2020, 10, 7. [Google Scholar] [CrossRef]
- Hildebrandt, T.; Knuesting, J.; Berndt, C.; Morgan, B.; Scheibe, R. Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol. Chem. 2015, 396, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.V.; Yedery, R.D.; Aranha, C. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents 2004, 24, 536–547. [Google Scholar] [CrossRef]
- Zhou, J.; Liao, M.; Ueda, M.; Gong, H.; Xuan, X.; Fujisaki, K. Sequence characterization and expression patterns of two defensin-like antimicrobial peptides from the tick Haemaphysalis longicornis. Peptides 2007, 28, 1304–1310. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, R.; Cruz, C.E.; Pires, J.R.; Daffre, S. Purification and characterization of Hb 98-114: A novel hemoglobin-derived antimicrobial peptide from the midgut of Rhipicephalus (Boophilus) microplus. Peptides 2012, 37, 120–127. [Google Scholar] [CrossRef]
- Oldiges, D.P.; Parizi, L.F.; Zimmer, K.R.; Lorenzini, D.M.; Seixas, A.; Masuda, A.; da Silva Vaz, I., Jr.; Termignoni, C. A Rhipicephalus (Boophilus) microplus cathepsin with dual peptidase and antimicrobial activity. Int. J. Parasitol. 2012, 42, 635–645. [Google Scholar] [CrossRef]
- Nakajima, Y.; Ogihara, K.; Taylor, D.; Yamakawa, M. Antibacterial hemoglobin fragments from the midgut of the soft tick, Ornithodoros moubata (Acari: Argasidae). J. Med. Entomol. 2003, 40, 78–81. [Google Scholar] [CrossRef]
- Armstrong, P.B.; Quigley, J.P. Immune function of α2-macrog-lobulin in invertebrates. In Invertebrate Immunology; Rinkevich, B., Müller, W.E.G., Eds.; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Buresova, V.; Hajdusek, O.; Franta, Z.; Sojka, D.; Kopacek, P. IrAM-An alpha2-macroglobulin from the hard tick Ixodes ricinus: Characterization and function in phagocytosis of a potential pathogen Chryseobacterium indologenes. Dev. Comp. Immunol. 2009, 33, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, W.; Wang, X.; Zhou, Y.; Wang, N.; Zhou, J. Identification of a cysteine-rich antimicrobial peptide from salivary glands of the tick Rhipicephalus haemaphysaloides. Peptides 2011, 32, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, S.; Gong, H.; Cao, J.; Zhou, Y.; Zhou, J. Functional analysis of a novel cysteine-rich antimicrobial peptide from the salivary glands of the tick Rhipicephalus haemaphysaloides. Parasitol. Res. 2015, 114, 3855–3863. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.D.; Rezende, C.A.; Rossi, D.C.; Esteves, E.; Dyszy, F.H.; Schreier, S.; Gueiros-Filho, F.; Campos, C.B.; Pires, J.R.; Daffre, S. Structure and mode of action of microplusin, a copper II-chelating antimicrobial peptide from the cattle tick Rhipicephalus (Boophilus) microplus. J. Biol. Chem. 2009, 284, 34735–34746. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Camarillo, S.D.; Quiroz-Castañeda, R.E.; Aguilar-Díaz, H.; Vara-Pastrana, J.E.; Pescador-Pérez, D.; Amaro-Estrada, I.; Martínez-Ocampo, F. Immunoinformatic Analysis to Identify Proteins to Be Used as Potential Targets to Control Bovine Anaplasmosis. Int. J. Microbiol. 2020, 2020, 8882031. [Google Scholar] [CrossRef]
- Martins, L.A.; Malossi, C.D.; Galletti, M.; Ribeiro, J.M.; Fujita, A.; Esteves, E.; Costa, F.B.; Labruna, M.B.; Daffre, S.; Fogaça, A.C. The Transcriptome of the Salivary Glands of Amblyomma aureolatum Reveals the Antimicrobial Peptide Microplusin as an Important Factor for the Tick Protection Against Rickettsia rickettsii Infection. Front. Physiol. 2019, 10, 529. [Google Scholar] [CrossRef]
- Laskowski, M.; Qasim, M.A. What can the structures of enzyme-inhibitor complexes tell us about the structures of enzyme substrate complexes? Biochim. Biophys. Acta 2000, 1477, 324–337. [Google Scholar] [CrossRef]
- Chmelař, J.; Kotál, J.; Langhansová, H.; Kotsyfakis, M. Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction. Front. Cell Infect. Microbiol. 2017, 7, 216. [Google Scholar] [CrossRef]
- Xu, Z.; Yan, Y.; Zhang, H.; Cao, J.; Zhou, Y.; Xu, Q.; Zhou, J. A serpin from the tick Rhipicephalus haemaphysaloides: Involvement in vitellogenesis. Vet. Parasitol. 2020, 279, 109064. [Google Scholar] [CrossRef]
- Xu, Z.; Yan, Y.; Cao, J.; Zhou, Y.; Zhang, H.; Xu, Q.; Zhou, J. A family of serine protease inhibitors (serpins) and its expression profiles in the ovaries of Rhipicephalus haemaphysaloides. Infect. Genet. Evol. 2020, 84, 104346. [Google Scholar] [CrossRef]
- Chlastáková, A.; Kaščáková, B.; Kotál, J.; Langhansová, H.; Kotsyfakis, M.; Kutá Smatanová, I.; Tirloni, L.; Chmelař, J. Iripin-1, a new anti-inflammatory tick serpin, inhibits leukocyte recruitment in vivo while altering the levels of chemokines and adhesion molecules. Front. Immunol. 2023, 14, 1116324. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Lew-Tabor, A.; Rodriguez-Valle, M. Effective inhibition of thrombin by Rhipicephalus microplus serpin-15 (RmS-15) obtained in the yeast Pichia pastoris. Ticks Tick Borne Dis. 2016, 7, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Tirloni, L.; Radulovic, Z.; Lewis, L.; Bakshi, M.; Hill, C.; da Silva Vaz, I., Jr.; Logullo, C.; Termignoni, C.; Mulenga, A. Conserved Amblyomma americanum tick Serpin19, an inhibitor of blood clotting factors Xa and XIa, trypsin and plasmin, has anti-haemostatic functions. Int. J. Parasitol. 2015, 45, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Kotál, J.; Polderdijk, S.G.I.; Langhansová, H.; Ederová, M.; Martins, L.A.; Beránková, Z.; Chlastáková, A.; Hajdušek, O.; Kotsyfakis, M.; Huntington, J.A.; et al. Ixodes ricinus Salivary Serpin Iripin-8 Inhibits the Intrinsic Pathway of Coagulation and Complement. Int. J. Mol. Sci. 2021, 22, 9480. [Google Scholar] [CrossRef]
- Leboulle, G.; Crippa, M.; Decrem, Y.; Mejri, N.; Brossard, M.; Bollen, A.; Godfroid, E. Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks. J. Biol. Chem. 2002, 277, 10083–10089. [Google Scholar] [CrossRef]
- Porter, L.; Radulović, Ž.; Kim, T.; Braz, G.R.; Da Silva Vaz, I., Jr.; Mulenga, A. Bioinformatic analyses of male and female Amblyomma americanum tick expressed serine protease inhibitors (serpins). Ticks Tick Borne Dis. 2015, 6, 16–30. [Google Scholar] [CrossRef]
- Fredslund, F.; Laursen, N.S.; Roversi, P.; Jenner, L.; Oliveira, C.L.; Pedersen, J.S.; Nunn, M.A.; Lea, S.M.; Discipio, R.; Sottrup-Jensen, L.; et al. Structure of and influence of a tick complement inhibitor on human complement component 5. Nat. Immunol. 2008, 9, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, J.G.; Charlab, R.; Mather, T.N.; Ribeiro, J.M. Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. J. Biol. Chem. 2000, 275, 18717–18723. [Google Scholar] [CrossRef]
- Schroeder, H.; Daix, V.; Gillet, L.; Renauld, J.C.; Vanderplasschen, A. The paralogous salivary anti-complement proteins IRAC I and IRAC II encoded by Ixodes ricinus ticks have broad and complementary inhibitory activities against the complement of different host species. Microbes Infect. 2007, 9, 247–250. [Google Scholar] [CrossRef]
- Tyson, K.; Elkins, C.; Patterson, H.; Fikrig, E.; de Silva, A. Biochemical and functional characterization of Salp20, an Ixodes scapularis tick salivary protein that inhibits the complement pathway. Insect Mol. Biol. 2007, 16, 469–479. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kim, T.H.; Bencosme-Cuevas, E.; Berry, J.; Gaithuma, A.S.K.; Ansari, M.A.; Kim, T.K.; Tirloni, L.; Radulovic, Z.; Moresco, J.J.; et al. A tick saliva serpin, IxsS17 inhibits host innate immune system proteases and enhances host colonization by Lyme disease agent. PLoS Pathog. 2024, 20, e1012032. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, K.; Gao, Z.; Zhang, S.; Li, H.; Shi, Y.; Song, X.; Liu, J.; Yu, Z.; Yang, X. Doenitin-1: A novel Kunitz family protein with versatile functions during feeding and reproduction of the tick Haemaphysalis doenitzi. Front. Vet. Sci. 2022, 9, 872244. [Google Scholar] [CrossRef] [PubMed]
- Assumpção, T.C.; Ma, D.; Mizurini, D.M.; Kini, R.M.; Ribeiro, J.M.; Kotsyfakis, M.; Monteiro, R.Q.; Francischetti, I.M. In Vitro Mode of Action and Anti-thrombotic Activity of Boophilin, a Multifunctional Kunitz Protease Inhibitor from the Midgut of a Tick Vector of Babesiosis, Rhipicephalus microplus. PLoS Negl. Trop. Dis. 2016, 10, e0004298. [Google Scholar] [CrossRef] [PubMed]
- Soares, T.S.; Watanabe, R.M.; Tanaka-Azevedo, A.M.; Torquato, R.J.; Lu, S.; Figueiredo, A.C.; Pereira, P.J.; Tanaka, A.S. Expression and functional characterization of boophilin, a thrombin inhibitor from Rhipicephalus (Boophilus) microplus midgut. Vet. Parasitol. 2012, 187, 521–528. [Google Scholar] [CrossRef]
- Liao, M.; Zhou, J.; Gong, H.; Boldbaatar, D.; Shirafuji, R.; Battur, B.; Nishikawa, Y.; Fujisaki, K. Hemalin, a thrombin inhibitor isolated from a midgut cDNA library from the hard tick Haemaphysalis longicornis. J. Insect Physiol. 2009, 55, 164–173. [Google Scholar] [CrossRef]
- Lovato, D.V.; Nicolau de Campos, I.T.; Amino, R.; Tanaka, A.S. The full-length cDNA of anticoagulant protein infestin revealed a novel releasable Kazal domain, a neutrophil elastase inhibitor lacking anticoagulant activity. Biochimie 2006, 88, 673–681. [Google Scholar] [CrossRef]
- de Marco, R.; Lovato, D.V.; Torquato, R.J.; Clara, R.O.; Buarque, D.S.; Tanaka, A.S. The first pacifastin elastase inhibitor characterized from a blood sucking animal. Peptides 2010, 31, 1280–1286. [Google Scholar] [CrossRef]
- Kellenberger, C.; Roussel, A. Structure-activity relationship within the serine protease inhibitors of the pacifastin family. Protein Pept. Lett. 2005, 12, 409–414. [Google Scholar] [CrossRef]
- Villar, M.; Ayllón, N.; Busby, A.T.; Galindo, R.C.; Blouin, E.F.; Kocan, K.M.; Bonzón-Kulichenko, E.; Zivkovic, Z.; Almazán, C.; Torina, A.; et al. Expression of Heat Shock and Other Stress Response Proteins in Ticks and Cultured Tick Cells in Response to Anaplasma spp. Infection and Heat Shock. Int. J. Proteomics 2010, 2010, 657261. [Google Scholar] [CrossRef]
- Vos, M.J.; Carra, S.; Kanon, B.; Bosveld, F.; Klauke, K.; Sibon, O.C.; Kampinga, H.H. Specific protein homeostatic functions of small heat-shock proteins increase lifespan. Aging Cell 2016, 15, 217–226. [Google Scholar] [CrossRef]
- Will, T.; Schmidtberg, H.; Skaljac, M.; Vilcinskas, A. Heat shock protein 83 plays pleiotropic roles in embryogenesis, longevity, and fecundity of the pea aphid Acyrthosiphon pisum. Dev. Genes. Evol. 2017, 227, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Morrow, G.; Battistini, S.; Zhang, P.; Tanguay, R.M. Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J. Biol. Chem. 2004, 279, 43382–43385. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; He, X.M.; Feng, L.L.; Duan, D.Y.; Zhan, Y.; Cheng, T.Y. Cloning of four HSPA multigene family members in Haemaphysalis flava ticks. Med. Vet. Entomol. 2020, 34, 192–200. [Google Scholar] [CrossRef]
- Vora, A.; Taank, V.; Dutta, S.M.; Anderson, J.F.; Fish, D.; Sonenshine, D.E.; Catravas, J.D.; Sultana, H.; Neelakanta, G. Ticks elicit variable fibrinogenolytic activities upon feeding on hosts with different immune backgrounds. Sci. Rep. 2017, 7, 44593. [Google Scholar] [CrossRef] [PubMed]
- He, X.M.; Liu, L.; Cheng, T.Y. HSC70 from Haemaphysalis flava (Acari: Ixodidae) exerts anticoagulation activity in vitro. Ticks Tick Borne Dis. 2019, 10, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-K.; Liu, G.-H.; Liu, L.; Wang, A.-B.; Cheng, T.-Y.; Duan, D.-Y. Comparative analysis of the anticoagulant activities and immunogenicity of HSC70 and HSC70(TKD) of Haemaphysalis flava. Parasit. Vectors 2022, 15, 411. [Google Scholar] [CrossRef]
- Friesen, K.J.; Dixon, M.; Lysyk, T.J. Embryo Development and Morphology of the Rocky Mountain Wood Tick (Acari: Ixodidae). J. Med. Entomol. 2016, 53, 279–289. [Google Scholar] [CrossRef]
No | Transcripts ID in PRJNA1168713 | Alignment Entry and Overview | E Value | Score | Identity (%) | iBAQ |
---|---|---|---|---|---|---|
TRANSPORTERS | Cluster-17602.43418 | A0A8X8MG03, Vitellin-a, Haemaphysalis flava | 0 | 9.17 × 103 | 93.30% | 1.51 × 1010 |
Cluster-17602.25911 | A0A411G179, Vitellogenin, Haemaphysalis flava | 0 | 8.9 × 103 | 87.50% | 1.39 × 1010 | |
ENZYMES | Cluster-17602.15229 | A0A6M2CKA2, Yolk cathepsin, Rhipicephalus microplus | 0 | 1.37 × 103 | 66.80% | 7.67 × 109 |
Cluster-11877.0 | A0A8K1PH81, Heme-binding asparlic proteinase, Rhipicephalus microplus | 0 | 1.35 × 103 | 67.50% | 1.40 × 109 | |
IMMUNITY-RELATED PROTEIN | Cluster-17602.29432 | A0A5B9BYB0, Cysteine-rich protein, Haemaphysalis flava | 3.10 × 10110 | 8.10 × 102 | 86.70% | 1.11 × 109 |
Cluster-17602.8619 | A0A6M2D6P5, His-rich 1 fat body overexpressed, Rhipicephalus microplus | 5.10 × 1017 | 1.88 × 102 | 38.10% | 1.50 × 109 | |
Cluster-17602.7590 | A0A6M2D6P5, His-rich 1 fat body overexpressed, Rhipicephalus microplus | 1.80 × 1017 | 1.91 × 102 | 40.20% | 2.16 × 109 | |
PROTEANASE INHIBITORS | Cluster-17602.31952 | A0A5P8H6S1, Serpin-a, Haemaphysalis longicornis | 7.40 × 10158 | 1.17 × 103 | 61.20% | 1.18 × 109 |
Cluster-11893.0 | A0A034WTW4, Serine proteinase inhibitor, Rhipicephalus microplus | 1.10 × 1029 | 2.69 × 102 | 56.80% | 4.20 × 109 | |
Cluster-17602.30986 | A0A034WTW0, Kunitz domain-containing protein 1, Rhipicephalus microplus | 0 | 1.83 × 103 | 34.50% | 4.49 × 109 | |
Cluster-17602.10962 | A0A8F1NJE0, Neutrophil elastase inhibitor, Haemaphysalis flava | 5.70 × 1030 | 2.70 × 102 | 53.50% | 1.63 × 109 | |
Cluster-17602.18555 | A0A8F1NJE0, Neutrophil elastase inhibitor, Haemaphysalis flava | 7.40 × 1049 | 3.94 × 102 | 73.50% | 1.25 × 1010 | |
Cluster-17602.35730 | A0A8F1NJE0, Neutrophil elastase inhibitor, Haemaphysalis flava | 6.40 × 1047 | 3.92 × 102 | 72.50% | 1.15 × 1010 | |
OTHERS | Cluster-17805.0 | B7QGW1, Secreted protein, Ixodes scapularis | 2.40 × 1019 | 2.07 × 102 | 42.30% | 1.97 × 109 |
Cluster-12057.0 | Q202J4, Dermonecrotic toxin SPH, Ixodes scapularis | 9.60 × 1036 | 1.94 × 102 | 44.90% | 1.44 × 109 | |
Cluster-17602.12808 | A0A182TMR5, Cuticular protein, Anopheles melas | 2.00 × 1015 | 3.33 × 102 | 29.70% | 2.08 × 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Cheng, T.; Liu, W. Egg Protein Compositions over Embryonic Development in Haemaphysalis hystricis Ticks. Animals 2024, 14, 3466. https://doi.org/10.3390/ani14233466
Tang Q, Cheng T, Liu W. Egg Protein Compositions over Embryonic Development in Haemaphysalis hystricis Ticks. Animals. 2024; 14(23):3466. https://doi.org/10.3390/ani14233466
Chicago/Turabian StyleTang, Qiwu, Tianyin Cheng, and Wei Liu. 2024. "Egg Protein Compositions over Embryonic Development in Haemaphysalis hystricis Ticks" Animals 14, no. 23: 3466. https://doi.org/10.3390/ani14233466
APA StyleTang, Q., Cheng, T., & Liu, W. (2024). Egg Protein Compositions over Embryonic Development in Haemaphysalis hystricis Ticks. Animals, 14(23), 3466. https://doi.org/10.3390/ani14233466