Advances in the Diagnosis of Equine Respiratory Diseases: A Review of Novel Imaging and Functional Techniques
Abstract
:Simple Summary
Abstract
1. Introduction
2. Advances in the Anatomical Imaging
2.1. Computed Tomography (CT) Imaging of Upper Respiratory Tract
2.1.1. Advantages
2.1.2. Disadvantages
2.1.3. Clinical Applications
2.2. Magnetic Resonance (MR) Imaging of Upper Respiratory Tract
2.2.1. Advantages
2.2.2. Disadvantages
2.2.3. Clinical Applications
3. Advances in the Functional Evaluation
3.1. Spirometry Evaluation of Lower Respiratory Tract
3.1.1. Advantages
3.1.2. Disadvantages
3.1.3. Clinical Applications
3.2. Electrical Impedance Tomography (EIT) Evaluation of Lower Respiratory Tract
3.2.1. Advantages
3.2.2. Disadvantages
3.2.3. Clinical Applications
3.3. Impulse Oscillation System (IOS) Evaluation of Lower Respiratory Tract
3.3.1. Advantages
3.3.2. Disadvantages
3.3.3. Clinical Applications
4. Future Development and Practical Applications
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roy, M.-F.; Lavoie, J.-P. Tools for the Diagnosis of Equine Respiratory Disorders. Vet. Clin. N. Am. Equine Pract. 2003, 19, 1–17. [Google Scholar] [CrossRef]
- Savage, C.J. Evaluation of the Equine Respiratory System Using Physical Examination and Endoscopy. Vet. Clin. N. Am. Equine Pract. 1997, 13, 443–462. [Google Scholar] [CrossRef]
- Marr, C. Thoracic Ultrasonography. Equine Vet. Educ. 1993, 5, 41–46. [Google Scholar] [CrossRef]
- Barrett, M.; Park, R. Review of Radiographic Technique and Interpretation of the Equine Skull. AAEP Proc. 2011, 57, 431–437. [Google Scholar]
- Gibbs, C.; Lane, J.G. Radiographic Examination of the Facial, Nasal and Paranasal Sinus Regions of the Horse. II. Radiological Findings. Equine Vet. J. 1987, 19, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Koblinger, K.; Nicol, J.; McDonald, K.; Wasko, A.; Logie, N.; Weiss, M.; Léguillette, R. Endoscopic Assessment of Airway Inflammation in Horses. J. Vet. Intern. Med. 2011, 25, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Barakzai, S.Z.; Dixon, P.M. Correlation of Resting and Exercising Endoscopic Findings for Horses with Dynamic Laryngeal Collapse and Palatal Dysfunction. Equine Vet. J. 2011, 43, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Kraft, S.L.; Gavin, P. Physical Principles and Technical Considerations for Equine Computed Tomography and Magnetic Resonance Imaging. Vet. Clin. N. Am. Equine Pract. 2001, 17, 115–130. [Google Scholar] [CrossRef]
- Kutasi, O.; Balogh, N.; Lajos, Z.; Nagy, K.; Szenci, O. Diagnostic Approaches for the Assessment of Equine Chronic Pulmonary Disorders. J. Equine Vet. Sci. 2011, 31, 400–410. [Google Scholar] [CrossRef] [Green Version]
- Lo Feudo, C.M.; Stucchi, L.; Alberti, E.; Stancari, G.; Conturba, B.; Zucca, E.; Ferrucci, F. The Role of Thoracic Ultrasonography and Airway Endoscopy in the Diagnosis of Equine Asthma and Exercise-Induced Pulmonary Hemorrhage. Vet. Sci. 2021, 8, 276. [Google Scholar] [CrossRef]
- Reef, V.B.; Whittier, M.; Allam, L.G. Thoracic Ultrasonography. Clin. Tech. Equine Pract. 2004, 3, 284–293. [Google Scholar] [CrossRef]
- Raphel, C.F. Endoscopic Findings in the Upper Respiratory Tract of 479 Horses. J. Am. Vet. Med. Assoc. 1982, 181, 470–473. [Google Scholar]
- Hardy, J.; Léveillé, R. Diseases of the Guttural Pouches. Vet. Clin. Equine Pract. 2003, 19, 123–158. [Google Scholar] [CrossRef]
- Couëtil, L.L.; Gallatin, L.L.; Blevins, W.; Khadra, I. Treatment of Tracheal Collapse with an Intraluminal Stent in a Miniature Horse. J. Am. Vet. Med. Assoc. 2004, 225, 1727–1732. [Google Scholar] [CrossRef]
- Couetil, L.; Cardwell, J.M.; Leguillette, R.; Mazan, M.; Richard, E.; Bienzle, D.; Bullone, M.; Gerber, V.; Ivester, K.; Lavoie, J.-P.; et al. Equine Asthma: Current Understanding and Future Directions. Front. Vet. Sci. 2020, 7, 450. [Google Scholar] [CrossRef]
- Perkins, G.A.; Viel, L.; Wagner, B.; Hoffman, A.; Erb, H.N.; Ainsworth, D.M. Histamine Bronchoprovocation Does Not Affect Bronchoalveolar Lavage Fluid Cytology, Gene Expression and Protein Concentrations of IL-4, IL-8 and IFN-Gamma. Vet. Immunol. Immunopathol. 2008, 126, 230–235. [Google Scholar] [CrossRef]
- Hathcock, J.T.; Stickle, R.L. Principles and Concepts of Computed Tomography. Vet. Clin. N. Am. Small Anim. Pract. 1993, 23, 399–415. [Google Scholar] [CrossRef]
- Dakin, S.G.; Lam, R.; Rees, E.; Mumby, C.; West, C.; Weller, R. Technical Set-up and Radiation Exposure for Standing Computed Tomography of the Equine Head: Standing CT of the Equine Head. Equine Vet. Educ. 2014, 26, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Tucker, R.L.; Farrell, E. Computed Tomography and Magnetic Resonance Imaging of the Equine Head. Vet. Clin. N. Am. Equine Pract. 2001, 17, 131–144. [Google Scholar] [CrossRef]
- Schliewert, E.-C.; Lascola, K.M.; O’Brien, R.T.; Clark-Price, S.C.; Wilkins, P.A.; Foreman, J.H.; Mitchell, M.A.; Hartman, S.K.; Kline, K.H. Comparison of Radiographic and Computed Tomographic Images of the Lungs in Healthy Neonatal Foals. Am. J. Vet. Res. 2015, 76, 42–52. [Google Scholar] [CrossRef]
- Farrow, C.S. The Equine Skull: Dealing Successfully with Radiographic Complexity. In Veterinary Diagnostic Imaging: The Horse; Farrow, C.S., Ed.; Mosby: Saint Louis, MO, USA, 2006; Chapter 18; pp. 329–332. ISBN 978-0-323-01206-5. [Google Scholar]
- Crijns, C.P.; Baeumlin, Y.; De Rycke, L.; Broeckx, B.J.G.; Vlaminck, L.; Bergman, E.H.J.; van Bree, H.; Gielen, I. Intra-Arterial versus Intra Venous Contrast-Enhanced Computed Tomography of the Equine Head. BMC Vet. Res. 2016, 12, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbee, D.D.; Allen, J.R.; Gavin, P.R. Computed tomography in horses: Technique. Vet. Radiol. 1987, 28, 144–151. [Google Scholar] [CrossRef]
- Solano, M.; Brawer, R.S. CT of the Equine Head: Technical Considerations, Anatomical Guide, and Selected Diseases. Clin. Tech. Equine Pract. 2004, 3, 374–388. [Google Scholar] [CrossRef]
- Esmaeili, F.; Johari, M.; Haddadi, P.; Vatankhah, M. Beam Hardening Artifacts: Comparison between Two Cone Beam Computed Tomography Scanners. J. Dent. Res. Dent. Clin. Dent. Prospect. 2012, 6, 49–53. [Google Scholar] [CrossRef]
- Witte, T.H.; Perkins, J.D. Early Diagnosis May Hold the Key to the Successful Treatment of Nasal and Paranasal Sinus Neoplasia in the Horse. Equine Vet. Educ. 2011, 23, 441–447. [Google Scholar] [CrossRef]
- Zakia, L.; Shaw, S.; Bonomelli, N.; O’Sullivan, S.; Zur Linden, A.; Dubois, M.; Baird, J.; Guest, B. Hematuria in a 3-Month-Old Filly with an Internal Umbilical Abscess and Internal Iliac Artery Aneurysm. Can. Vet. J. 2021, 62, 877–881. [Google Scholar]
- Strohmayer, C.; Klang, A.; Kneissl, S. Computed Tomographic and Histopathological Characteristics of 13 Equine and 10 Feline Oral and Sinonasal Squamous Cell Carcinomas. Front. Vet. Sci. 2020, 7, 591437. [Google Scholar] [CrossRef]
- Cilliers, I.; Williams, J.; Carstens, A.; Duncan, N.M. Three Cases of Osteoma and an Osseous Fibroma of the Paranasal Sinuses of Horses in South Africa: Clinical Communication. J. S. Afr. Vet. Assoc. 2008, 79, 185–193. [Google Scholar] [CrossRef] [Green Version]
- De Zani, D.; Zani, D.D.; Borgonovo, S.; Di Giancamillo, M.; Rondena, M.; Verschooten, F. An Undifferentiated Sarcoma in the Cervical Region in a Horse: Undifferentiated Cervical Sarcoma in a Horse. Equine Vet. Educ. 2011, 23, 138–141. [Google Scholar] [CrossRef]
- Cissell, D.D.; Wisner, E.R.; Textor, J.; Mohr, F.C.; Scrivani, P.V.; Théon, A.P. Computed Tomographic Appearance of Equine Sinonasal Neoplasia. Vet. Radiol. Ultrasound 2012, 53, 245–251. [Google Scholar] [CrossRef]
- Henninger, W.; Mairi Frame, E.; Willmann, M.; Simhofer, H.; Malleczek, D.; Kneissl, S.M.; Mayrhofer, E. CT Features of alveolitis and sinusitis in horses. Vet. Radiol. Ultrasound 2003, 44, 269–276. [Google Scholar] [CrossRef]
- Fenner, M.F.; Verwilghen, D.; Townsend, N.; Simhofer, H.; Schwarzer, J.; Zani, D.D.; Bienert-Zeit, A. Paranasal Sinus Cysts in the Horse: Complications Related to Their Presence and Surgical Treatment in 37 Cases. Equine Vet. J. 2019, 51, 57–63. [Google Scholar] [CrossRef]
- Annear, M.J.; Gemensky-Metzler, A.J.; Elce, Y.A.; Stone, S.G. Exophthalmus Secondary to a Sinonasal Cyst in a Horse. J. Am. Vet. Med. Assoc. 2008, 15, 233–285. [Google Scholar] [CrossRef]
- Ostrowska, J.; Lindström, L.; Tóth, T.; Hansson, K.; Uhlhorn, M.; Ley, C.J. Computed Tomography Characteristics of Equine Paranasal Sinus Cysts. Equine Vet. J. 2020, 52, 538–546. [Google Scholar] [CrossRef]
- Hilton, H.; Puchalski, S.M.; Aleman, M. The Computed Tomographic Appearance of Equine Temporohyoid Osteoarthropathy. Vet. Radiol. Ultrasound 2009, 50, 151–156. [Google Scholar] [CrossRef]
- Divers, T.J.; Ducharme, N.G.; de Lahunta, A.; Irby, N.L.; Scrivani, P.V. Temporohyoid Osteoarthropathy. Clin. Tech. Equine Pract. 2006, 5, 17–23. [Google Scholar] [CrossRef]
- Bras, J.J.; Davis, E.; Beard, W.L. Bilateral Ceratohyoidectomy for the Resolution of Clinical Signs Associated with Temporohyoid Osteoarthropathy. Equine Vet. Educ. 2014, 26, 116–120. [Google Scholar] [CrossRef]
- Kowalczyk, L.; Boehler, A.; Brunthaler, R.; Rathmanner, M.; Rijkenhuizen, A.B.M. Squamous Cell Carcinoma of the Paranasal Sinuses in Two Horses. Equine Vet. Educ. 2011, 23, 435–440. [Google Scholar] [CrossRef]
- Dixon, P.M.; Barnett, T.P.; Morgan, R.E.; Reardon, R.J.M. Computed Tomographic Assessment of Individual Paranasal Sinus Compartment and Nasal Conchal Bulla Involvement in 300 Cases of Equine Sinonasal Disease. Front. Vet. Sci. 2020, 7, 797. [Google Scholar] [CrossRef]
- Sogaro-Robinson, C.; Lacombe, V.A.; Reed, S.M.; Balkrishnan, R. Factors Predictive of Abnormal Results for Computed Tomography of the Head in Horses Affected by Neurologic Disorders: 57 Cases (2001–2007). J. Am. Vet. Med. Assoc. 2009, 235, 176–183. [Google Scholar] [CrossRef]
- Manso-Díaz, G.; García-López, J.M.; Maranda, L.; Taeymans, O. The Role of Head Computed Tomography in Equine Practice. Equine Vet. Educ. 2015, 27, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Garrett, K.S.; Woodie, J.B.; Cook, J.L.; Williams, N.M. Imaging Diagnosis—Nasal Septal and Laryngeal Cyst-like Malformationsin a Thoroughbred Weanling Colt Diagnosed Using Ultrasonography and Magnetic Resonance Imaging. Vet. Radiol. Ultrasound Off. J. Am. Coll. Vet. Radiol. Int. Vet. Radiol. Assoc. 2010, 51, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.C. Equine MRI, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 249–267. [Google Scholar]
- Fitz, J.; Gerhards, H. Magnetic Resonance Imaging of the Thorax and Abdomen in Foals. Pferdeheilkunde 2005, 21, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Nibeyro, S.D.; Werpy, N.M.; Gold, S.J.; Olguin, S.; Schaeffer, D.J. Standing MRI Lesions of the Distal Interphalangeal Joint and Podotrochlear Apparatus Occur with a High Frequency in Warmblood Horses. Vet. Radiol. Ultrasound 2020, 61, 336–345. [Google Scholar] [CrossRef]
- Werpy, N.M. Magnetic Resonance Imaging of the Equine Patient: A Comparison of High- and Low-Field Systems. Clin. Tech. Equine Pract. 2007, 6, 37–45. [Google Scholar] [CrossRef]
- Hatabu, H.; Ohno, Y.; Gefter, W.B.; Parraga, G.; Madore, B.; Lee, K.S.; Altes, T.A.; Lynch, D.A.; Mayo, J.R.; Seo, J.B.; et al. Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders: Fleischner Society Position Paper. Radiology 2020, 297, 286–301. [Google Scholar] [CrossRef]
- Zani, D.D.; Rabbogliatti, V.; Ravasio, G.; Pettinato, C.; Giancamillo, M.D.; Zani, D.D. Contrast Enhanced Magnetic Resonance Imaging of the Foot in Horses Using Intravenous versus Regional Intraarterial Injection of Gadolinium. Open Vet. J. 2018, 8, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Waselau, M.; McKnight, A.; Kasparek, A. Magnetic Resonance Imaging of Equine Stifles: Technique and Observations in 76 Clinical Cases. Equine Vet. Educ. 2020, 32, 85–91. [Google Scholar] [CrossRef]
- Barrett, M.F.; Selberg, K.T.; Johnson, S.A.; Hersman, J.; Frisbie, D.D. High Field Magnetic Resonance Imaging Contributes to Diagnosis of Equine Distal Tarsus and Proximal Metatarsus Lesions: 103 Horses. Vet. Radiol. Ultrasound 2018, 59, 587–596. [Google Scholar] [CrossRef]
- Ferrell, E.A.; Gavin, P.R.; Tucker, R.L.; Sellon, D.C.; Hikes, M.T. Magnetic Resonance for Evaluation of Neurologic Disease in 12 Horses. Vet. Radiol. Ultrasound 2002, 43, 510–516. [Google Scholar] [CrossRef]
- Spoormakers, T.J.P.; Ensink, J.M.; Goehring, L.S.; Koeman, J.P.; Braake, F.T.; van der Vlugt-Meijer, R.H.; van der Belt, A.J.M. Brain Abscesses as a Metastatic Manifestation of Strangles: Symptomatology and the Use of Magnetic Resonance Imaging as a Diagnostic Aid. Equine Vet. J. 2010, 35, 146–151. [Google Scholar] [CrossRef]
- Tessier, C.; Brühschwein, A.; Lang, J.; Konar, M.; Wilke, M.; Brehm, W.; Kircher, P. Magnetic Resonance Imaging Features of Sinonasal Disorders in Horses. Vet. Radiol. Ultrasound. 2013, 54, 54–60. [Google Scholar] [CrossRef]
- Garrett, K.S.; Woodie, J.B.; Embertson, R.M.; Pease, A.P. Diagnosis of Laryngeal Dysplasia in Five Horses Using Magnetic Resonance Imaging and Ultrasonography. Equine Vet. J. 2009, 41, 766–771. [Google Scholar] [CrossRef] [Green Version]
- Garrett, K.S. Advances in Diagnostic Imaging of the Larynx and Pharynx. Equine Vet. Educ. 2012, 24, 17–18. [Google Scholar] [CrossRef]
- Rieger, C.; Herzog, P.; Eibel, R.; Fiegl, M.; Ostermann, H. Pulmonary MRI--a New Approach for the Evaluation of Febrile Neutropenic Patients with Malignancies. Support. Care Cancer. 2008, 16, 599–606. [Google Scholar] [CrossRef]
- Syrjala, H.; Broas, M.; Ohtonen, P.; Jartti, A.; Pääkkö, E. Chest Magnetic Resonance Imaging for Pneumonia Diagnosis in Outpatients with Lower Respiratory Tract Infection. Eur. Respir. J. 2017, 49, 1601303. [Google Scholar] [CrossRef] [Green Version]
- Eibel, R.; Herzog, P.; Dietrich, O.; Rieger, C.T.; Ostermann, H.; Reiser, M.F.; Schoenberg, S.O. Pulmonary Abnormalities in Immunocompromised Patients: Comparative Detection with Parallel Acquisition MR Imaging and Thin-Section Helical CT. Radiology 2006, 241, 880–891. [Google Scholar] [CrossRef]
- Couetil, L.L.; Rosenthal, F.S.; DeNicola, D.B.; Chilcoat, C.D. Clinical Signs, Evaluation of Bronchoalveolar Lavage Fluid, and Assessment of Pulmonary Function in Horses with Inflammatory Respiratory Disease. Am. J. Vet. Res. 2001, 62, 538–546. [Google Scholar] [CrossRef]
- Butler, P.J.; Woakes, A.J.; Smale, K.; Roberts, C.A.; Hillidge, C.J.; Snow, D.H.; Marlin, D.J. Respiratory and Cardiovascular Adjustments during Exercise of Increasing Intensity and during Recovery in Thoroughbred Racehorses. J. Exp. Biol. 1993, 179, 159–180. [Google Scholar] [CrossRef]
- Hyatt, R.E.; Scanlon, P.D.; Nakamura, M. Interpretation of Pulmonary Function Tests; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; ISBN 978-1-4511-4380-5. [Google Scholar]
- Hoffman, A.M. Clinical Application of Pulmonary Function Testing in Horses. Available online: https://www.ivis.org/library/equine-respiratory-diseases/clinical-application-of-pulmonary-function-testing-horses (accessed on 20 December 2021).
- Burnheim, K.; Hughes, K.J.; Evans, D.L.; Raidal, S.L. Reliability of Breath by Breath Spirometry and Relative Flow-Time Indices for Pulmonary Function Testing in Horses. BMC Vet. Res. 2016, 12, 268. [Google Scholar] [CrossRef] [Green Version]
- Herteman, N.; Mosing, M.; Waldmann, A.; Gerber, V.; Schoster, A. Exercise-induced Airflow Changes in Horses with Asthma Measured by Electrical Impedance Tomography. J. Vet. Intern. Med. 2021, 35, 2500–2510. [Google Scholar] [CrossRef]
- Erck, E.; Votion, D.; Art, T.; Lekeux, P. Measurement of Respiratory Function by Impulse Oscillometry in Horses. Equine Vet. J. 2010, 36, 21–28. [Google Scholar] [CrossRef]
- Moens, Y.P.S. Clinical Application of Continuous Spirometry with a Pitot-Based Flow Meter during Equine Anaesthesia. Equine Vet. Educ. 2010, 22, 354–360. [Google Scholar] [CrossRef]
- Evans, D.L.; Kiddell, L.; Smith, C.L. Pulmonary Function Measurements Immediately after Exercise Are Correlated with Neutrophil Percentage in Tracheal Aspirates in Horses with Poor Racing Performance. Res. Vet. Sci. 2011, 90, 510–515. [Google Scholar] [CrossRef]
- Herholz, C.; Straub, R.; Braendlin, C.; Imhof, A.; Lüthi, S.; Busato, A. Measurement of Tidal Breathing Flow-Volume Loop Indices in Horses Used for Different Sporting Purposes with and without Recurrent Airway Obstruction. Vet. Rec. 2003, 152, 288–292. [Google Scholar] [CrossRef]
- Raidal, S.L.; Burnheim, K.; Evans, D.; Hughes, K.J. Effects of Sedation and Salbutamol Administration on Hyperpnoea and Tidal Breathing Spirometry in Healthy Horses. Vet. J. 2017, 222, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Mosing, M.; Marly-Voquer, C.; Macfarlane, P.; Bardell, D.; Bohm, S.; Bettschart-Wolfensberger, R.; Waldmann, A. Regional Distribution of Ventilation in Horses in Dorsal Recumbency during Spontaneous and Mechanical Ventilation Assessed by Electrical Impedance Tomography: A Case Series. Vet. Anaesth. Analg. 2016, 44, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Ambrisko, T.D.; Schramel, J.P.; Adler, A.; Kutasi, O.; Makra, Z.; Moens, Y.P.S. Assessment of Distribution of Ventilation by Electrical Impedance Tomography in Standing Horses. Physiol. Meas. 2015, 37, 175–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Secombe, C.; Adler, A.; Hosgood, G.; Raisis, A.; Mosing, M. Can Bronchoconstriction and Bronchodilatation in Horses Be Detected Using Electrical Impedance Tomography? J. Vet. Intern. Med. 2021, 35, 2035–2044. [Google Scholar] [CrossRef] [PubMed]
- Van Erck, E.; Votion, D.M.; Kirschvink, N.; Art, T.; Lekeux, P. Use of the Impulse Oscillometry System for Testing Pulmonary Function during Methacholine Bronchoprovocation in Horses. Am. J. Vet. Res. 2003, 64, 1414–1420. [Google Scholar] [CrossRef]
- Van Erck, E.; Votion, D.; Kirschvink, N.; Genicot, B.; Lindsey, J.; Art, T.; Lekeux, P. Influence of Breathing Pattern and Lung Inflation on Impulse Oscillometry Measurements in Horses. Vet. J. 2004, 168, 259–269. [Google Scholar] [CrossRef]
- Klein, C.; Smith, H.-J.; Reinhold, P. The Use of Impulse Oscillometry for Separate Analysis of Inspiratory and Expiratory Impedance Parameters in Horses: Effects of Sedation with Xylazine. Res. Vet. Sci. 2006, 80, 201–208. [Google Scholar] [CrossRef]
- Stucchi, L.; Ferrucci, F.; Bullone, M.; Dellacà, R.L.; Lavoie, J.P. Within-Breath Oscillatory Mechanics in Horses Affected by Severe Equine Asthma in Exacerbation and in Remission of the Disease. Animals 2022, 12, 4. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef]
- Moore, V.C. Spirometry: Step by Step. Breathe 2012, 8, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Leith, D.E. Comparative Mammalian Respiratory Mechanics. Physiologist 1976, 19, 485–510. [Google Scholar]
- Jat, K.R. Spirometry in Children. Prim. Care Respir. J. 2013, 22, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, A.J.; Beadle, R.E.; Bateman, R.D.; White, C.E. Characterization of Normal Tidal Breathing Flow-Volume Loops for Thoroughbred Horses. Vet. Res. Commun. 1995, 19, 331–342. [Google Scholar] [CrossRef]
- Art, T.; Lekeux, P. Respiratory Airflow Patterns in Ponies at Rest and during Exercise. Can. J. Vet. Res. 1988, 52, 299–303. [Google Scholar]
- Connally, B.A.; Derksen, F.J. Tidal Breathing Flow-Volume Loop Analysis as a Test of Pulmonary Function in Exercising Horses. Am. J. Vet. Res. 1994, 55, 589–594. [Google Scholar]
- Petsche, V.M.; Derksen, F.J.; Robinson, N.E. Tidal Breathing Flow-Volume Loops in Horses with Recurrent Airway Obstruction (Heaves). Am. J. Vet. Res. 1994, 55, 885–891. [Google Scholar]
- Mazan, M.R.; Hoffman, A.M. Effects of Aerosolized Albuterol on Physiologic Responses to Exercise in Standardbreds. Am. J. Vet. Res. 2001, 62, 1812–1817. [Google Scholar] [CrossRef]
- Frerichs, I.; Amato, M.B.P.; van Kaam, A.H.; Tingay, D.G.; Zhao, Z.; Grychtol, B.; Bodenstein, M.; Gagnon, H.; Böhm, S.H.; Teschner, E.; et al. Chest Electrical Impedance Tomography Examination, Data Analysis, Terminology, Clinical Use and Recommendations: Consensus Statement of the TRanslational EIT DevelopmeNt StuDy Group. Thorax 2017, 72, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-M.; Sun, X.-M.; Zhou, Y.-M.; Chen, J.-R.; Cheng, K.-M.; Li, H.-L.; Yang, Y.-L.; Zhang, L.; Zhou, J.-X. Use of Electrical Impedance Tomography (EIT) to Estimate Global and Regional Lung Recruitment Volume (VREC) Induced by Positive End-Expiratory Pressure (PEEP): An Experiment in Pigs with Lung Injury. Med. Sci. Monit. 2020, 26, e922609. [Google Scholar] [CrossRef]
- Dijkstra, A.M.; Brown, B.H.; Leathard, A.D.; Harris, N.D.; Barber, D.C.; Edbrooke, D.L. Review Clinical Applications of Electrical Impedance Tomography. J. Med. Eng. Technol. 1993, 17, 89–98. [Google Scholar] [CrossRef]
- Secombe, C.; Waldmann, A.; Hosgood, G.; Mosing, M. Evaluation of Histamine-provoked Changes in Airflow Using Electrical Impedance Tomography in Horses. Equine Vet. J. 2019, 52, 556–563. [Google Scholar] [CrossRef]
- Wey, C.; Meira, C.; Mosing, M.; Bleul, U. Development of the Postnatal Lung in Bovine Neonates Illustrated by Electrical Impedance Tomography (EIT). In Proceedings of the Conference: Workshop on Gonadal Function, Gamete Interaction and Pregnancy (GGP), Giessen, Germany, 30 October 2017. [Google Scholar]
- Ambrisko, T.; Schramel, J.; Auer, U.; Moens, Y.; Staffieri, F. Impact of Four Different Recumbencies on the Distribution of Ventilation in Conscious or Anaesthetized Spontaneously Breathing Beagle Dogs: An Electrical Impedance Tomography Study. PLoS ONE 2017, 12, e0183340. [Google Scholar] [CrossRef] [Green Version]
- Moens, Y.; Schramel, J.; Tusman, G.; Ambrisko, T.; Solà, J.; Brunner, J.; Kowalczyk, L.; Böhm, S. Variety of Non-Invasive Continuous Monitoring Methodologies Including Electrical Impedance Tomography Provides Novel Insights into the Physiology of Lung Collapse and Recruitment—Case Report of an Anaesthetized Horse. Vet. Anaesth. Analg. 2013, 41, 196–204. [Google Scholar] [CrossRef]
- Mosing, M.; Sacks, M.; Tahas, S.; Ranninger, E.; Bohm, S.; Campagna, I.; Waldmann, A. Ventilatory Incidents Monitored by Electrical Impedance Tomography in an Anaesthetized Orangutan (Pongo Abelii). Vet. Anaesth. Analg. 2017, 44, 973–976. [Google Scholar] [CrossRef]
- Schramel, J.; Nagel, C.; Auer, U.; Palm, F.; Aurich, C.; Moens, Y. Distribution of Ventilation in Pregnant Shetland Ponies Measured by Electrical Impedance Tomography. Respir. Physiol. Neurobiol. 2012, 180, 258–262. [Google Scholar] [CrossRef]
- Milne, S.; Huvanandana, J.; Nguyen, C.; Duncan, J.M.; Chapman, D.G.; Tonga, K.O.; Zimmermann, S.C.; Slattery, A.; King, G.G.; Thamrin, C. Time-Based Pulmonary Features from Electrical Impedance Tomography Demonstrate Ventilation Heterogeneity in Chronic Obstructive Pulmonary Disease. J. Appl. Physiol. 2019, 127, 1441–1452. [Google Scholar] [CrossRef] [PubMed]
- Mosing, M.; Waldmann, A.; Macfarlane, P.; Iff, S.; Auer, U.; Bohm, S.; Bettschart-Wolfensberger, R.; Bardell, D. Horses Auto-Recruit Their Lungs by Inspiratory Breath Holding Following Recovery from General Anaesthesia. PLoS ONE 2016, 11, e0158080. [Google Scholar] [CrossRef] [PubMed]
- Auer, U.; Schramel, J.; Moens, Y.; Mosing, M.; Braun, C. Monitoring Changes in Distribution of Pulmonary Ventilation by Functional Electrical Impedance Tomography in Anaesthetized Ponies. Vet. Anaesth. Analg. 2018, 46, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Wettstein, D.; Moens, Y.; Jaeggin-Schmucker, N.; Böhm, S.H.; Rothen, H.U.; Mosing, M.; Kästner, S.B.R.; Schatzmann, U. Effects of an Alveolar Recruitment Maneuver on Cardiovascular and Respiratory Parameters during Total Intravenous Anesthesia in Ponies. Am. J. Vet. Res. 2006, 67, 152–159. [Google Scholar] [CrossRef]
- Mosing, M.; Auer, U.; Macfarlane, P.; Bardell, D.; Schramel, J.; Bohm, S.; Bettschart-Wolfensberger, R.; Waldmann, A. Regional Ventilation Distribution and Dead Space in Anaesthetised Horses Treated with and without Continuous Positive Airway Pressure (CPAP). Vet. Anaesth. Analg. 2017, 45, 31–40. [Google Scholar] [CrossRef]
- Balleza, M.; Casan, P.; Riu, P.J. Tidal Volume Monitoring with Electrical Impedance Tomography (EIT) on COPD Patients. Relationship Between EIT and Diffusion Lung Transfer (DL,CO). In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009; Dössel, O., Schlegel, W.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 549–552. [Google Scholar]
- Vogt, B.; Pulletz, S.; Elke, G.; Zhao, Z.; Zabel, P.; Weiler, N.; Frerichs, I. Spatial and Temporal Heterogeneity of Regional Lung Ventilation Determined by Electrical Impedance Tomography during Pulmonary Function Testing. J. Appl. Physiol. 2012, 113, 1154–1161. [Google Scholar] [CrossRef] [Green Version]
- Leclere, M.; Lavoie-Lamoureux, A.; Lavoie, J.-P. Heaves, an Asthma-like Disease of Horses. Respirology 2011, 16, 1027–1046. [Google Scholar] [CrossRef]
- Komarow, H.D.; Myles, I.A.; Uzzaman, A.; Metcalfe, D.D. Impulse Oscillometry in the Evaluation of Diseases of the Airways in Children. Ann. Allergy Asthma Immunol. 2011, 106, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Richard, E.A.; Fortier, G.D.; Denoix, J.-M.; Art, T.; Lekeux, P.M.; Erck, E. van Influence of Subclinical Inflammatory Airway Disease on Equine Respiratory Function Evaluated by Impulse Oscillometry. Equine Vet. J. 2009, 41, 384–389. [Google Scholar] [CrossRef]
- Koulouris, N.G.; Hardavella, G. Physiological Techniques for Detecting Expiratory Flow Limitation during Tidal Breathing. Eur. Respir. Rev. 2011, 20, 147–155. [Google Scholar] [CrossRef]
Disease | Area 1 | Main Findings | Authors |
---|---|---|---|
Sinusitis | Paranasal sinuses | Thickening of the respiratory epithelium, teeth involvement. The inhomogeneous appearance of the thickened bone, sclerosis of the facial crest, deformed shape of the maxilla, irregularly defined periostitis, bone loss or perforation, soft tissue swelling of the face. | Henninger et al. (2003) [32] Tucker et al. (2001) [19] |
Laryngeal dysplasia | Larynx | Thyroid cartilage abnormalities: lack of a cricothyroid articulation, a dorsal extension of the thyroid cartilage, absence of the caudal cornu of the thyroid cartilage, absence of the articular process of the cricoid cartilage, and hypoplasia or absence of the cricopharyngeus muscle. | Garrett et al. (2010) [43] |
Cysts and cyst-like lesions | Larynx and cranial cervical trachea | Thickening, heterogenous signal intensity of thyroid cartilage laminae, the ventral and lateral aspects of the cricoid cartilage, and the ventral aspect of the first tracheal ring. The thyroid, arytenoid, and cricoid cartilages and the first tracheal ring, presence of focal areas of hyperintense signal consistent with fluid. Thickening of the nasal mucosa. Narrowed nasal meati. Homogeneous hyperintense signal, consistent with fluid of interior of the nasal septum. | Garrett et al. (2010) [43] |
Paranasal sinuses | Focal mineralization of the soft tissue mass. Fluid lines in one or more paranasal sinuses, dental apex flattening. Bulging and thinning of maxillary bone, partial destruction of the osseous orbit, infraorbital canal changes. Displacement and distortion of the osseous infraorbital or lacrimal canal. | Fenner et al. (2019) [33] | |
Paranasal sinuses | Homogenous soft tissue/fluid filling the entire maxillary sinus. Expansion of right maxillary sinus with the erosion of the first molar. | Tucker et al. (2001) [19] | |
Paranasal sinuses | Large, clearly demarcated mass within the left caudal maxillary and left conchofrontal sinuses. Lysis of the sphenoid and palatine bones of the medial left orbit and left infraorbital canal. Extension into the left retrobulbar space, with rostral and lateral displacement of the left globe. | Annear et al. (2008) [34] | |
Tumors | Paranasal sinuses | Squamosus cell carcinoma: irregularly surfaced heterogeneous soft tissue mass filling the maxillary sinus and ventral conchal sinus. | Kowalczyk et al. (2011) [39] |
Paranasal sinuses, nasal cavity, tongue, mandible | Squamosus cell carcinoma: soft tissue attenuation filling maxillary sinus, dorsal conchal sinus, ventral conchal sinus, while the conchofrontal and sphenopalatine sinus showed different amount of filling. Nodular masses involved a third of the ipsilateral rostral maxillary sinus and less than a third of the conchofrontal sinus. Involvement of stylohyoid bone. Small nodular soft tissue lesions along the nasal septum. | Strohmayer et al. (2020) [28] | |
Neck | Dystrophic mineralized mass at the right side of the vertebral bodies of C3 and C4, associated with bone resorption that caused the thinning of the right transverse process and a widening of the angle between the transverse process and the arch of C3. | De Zani et al. (2011) [30] | |
Nasal cavity, Paranasal sinuses | Hemangiosarcoma, nasal adenocarcinoma, myxoma, myxosarcoma, chondroblastic osteosarcoma, anaplastic sarcoma characterized by a homogeneous, poorly defined mass that was iso- or mildly hypoattenuating compared to masseter muscle. | Cissel et al. (2012) [31] | |
Paranasal sinuses | Osseous fibroma: well-marginated mass in right nasal passage with destruction of caudal aspect of nasal septum and extension of the mass into the choanae. Rostrocaudal extent of the soft tissue density with loss of bone density in the vicinity of the cribriform plate | Cilliers et al. (2008) [29] | |
Temporohyoid osteoarthropathy | Temporohyoid articulation | Osseous proliferation of the stylohyoid bone and temoporohyoid articulation, thickening of ceratohyoid bone. Lytic osseous changes of the petrous temporal and stylohyoid bones. | Hilton et al. (2009) [36] Divers et al. (2006) [37] Bras et al. (2014) [38] |
Disease | Area 1 | Main Findings | Authors |
---|---|---|---|
Cyst | Paranasal sinus | Homogeneous On T1W sequences, the cyst was hypointense compared to temporal muscles, no contrast enhancement within the cystic fluid. rim enhancement On T2W sequences, the contents were hyperintense to surrounding muscle, and a wall could be observed consistently surrounding the lesion. This rim was observed consistently around the lesion and could be differentiated from the adjacent mucosa. | Tessier et al. (2013) [54] |
Abscess | Ventral Conchal sinus | Well-defined capsule with heterogeneous signal intensity in T2W images, deviation of the dorsal conchal sinus wall, and infraorbital canal. | Manso Diaz et al. (2015) [42] |
Tumors | Nasal septum | Chondrosarcoma: heterogeneous intensities on all sequences and no defined borders of the lesion. | Tessier et al. (2013) [54] |
Middle nasal meatus | Osteoma: irregularly shaped mass that was hypointense on both T1W and T2W images, containing small foci isointense to muscle on T2W images, maxillary bone atrophy. | Manso Diaz et al. (2015) [42] | |
Nasal cavity | Lymphoma, squamous cell carcinoma: expansile, heterogeneously, and moderate contrast-enhancing mass with complete occlusion of the nasal cavity. | ||
Laryngeal dysplasia | Larynx | Lack of a cricothyroid articulation, dorsal extension of the thyroid cartilage, absence of the caudal cornu of the thyroid cartilage, absence of the articular process of the cricoid cartilage and hypoplasia, or absence of the cricopharyngeus muscle. | Garrett et al. (2009) [55] |
Function | Technique | Area 1 | Main Findings | Authors |
---|---|---|---|---|
Monitor ventilator volumes and respiratory mechanics, control the depth of the anesthesia | Spirometry with pilot-based flow meter | Lungs | Measurement of tidal volume and minute volume, dynamic compliance (Cdyn) of the respiratory system. Visual presentation of pressure-volume (PV) and flow-volume (FV) loop of each breath, representing the compliance (PV) and resistance (FV) of the respiratory system. | Moens et al. (2010) [67] |
Correlation of spirometry results and percentage of neutrophils (N%) in tracheal aspirates | Spirometry | Lungs | Wide variation in N% in tracheal aspirates of clinically normal horses with poor racing performance, spirometry results significantly correlated with measurements of N% in tracheal aspirates. | Evans et al. (2011) [68] |
Comparison of tidal breathing flow-volume loop (TBFVL) of healthy horses and horses suffering from mild and to severe asthma | Spirometry | Lungs | Disease-related differences in TBFVL indices are affected by the type of work undertaken by a horse. | Herholz et al. (2003) [69] |
Measurement respiratory rate, tidal volume, peak inspiratory and expiratory flows, time to peak flow in healthy horses | Spirometry | Lungs | Measurements were repeatable and reproducible, however variable breathing patterns within the same day and on a breath-to-breath basis were present. | Burnheim et al. (2016) [64] |
Effect of sedation and salbutamol administration on tidal breathing | Spirometry | Lungs | After sedation, minute ventilation was reduced in association with reduced respiratory rate and decreased expiratory and inspiratory flows. Relative expiratory time was reduced after xylazine, and peak expiratory flow occurred later in the respiratory cycle. Salbutamol administration has a significant effect on most parameters except the increase in peak inspiratory flow during tidal breathing. | Raidal et al. (2017) [70] |
Monitoring of ventilation during anesthesia | EIT | Lungs | Inspiratory breath-holding and the redistribution of gas from ventral to dorsal regions of the lung after recovery from general anesthesia. | Mosing et al. (2016) [71] |
Monitoring of recruitment maneuvers (RM) during anesthesia | EIT | Lungs | During recruitment maneuvers, ventilation in independent ventral region. | Ambrisco et al. (2015) [72] |
Detection of bronchoconstriction and bronchodilatation | EIT | Lungs | EIT-derived flow indices for ventilation significantly changed after histamine administration and returned to control values with subsequent albuterol administration. | Secombe et al. (2021) [73] |
Effect of sedation and salbutamol administration on tidal breathing | ||||
Diagnosis and monitoring of equine asthma | EIT | Lungs | Healthy horses have lower peak expiratory and inspiratory flow compare to horses with mild or severe asthma after exercise. | Herteman et al. (2021) [65] |
Diagnosis of bronchoconstriction | IOS | Lungs | IOS parameters in the low-frequency range were sensitive indicators of early methacholine-induced bronchoconstriction. | Van Erck et al. (2003) [74] |
Standardization of IOS measurements | IOS | Lungs | IOS measurements were reliable and repeatable. Age, sex, and bodyweight did not influence IOS measurements. Measurements from 5 to 15 Hz were found to be most relevant. | Van Erck et al. (2004) [75] |
Effects of sedation on lung airflow | IOS | Lungs | Inspiratory parameters were found to be significantly dependent on the time course of sedation, whereas expiratory parameters were not influenced. | Klein et al. (2006) [76] |
Diagnosis and staging of equine asthma | IOS | Lungs | Significant changes were present between horses in exacerbation of EA and control horses within inspiratory and expiratory parameters. The delta reactance (ΔX) shows the presence of tidal expiratory flow limitation (EFLt) and dynamic airway compression in SEA horses in exacerbation of the clinical signs. | Stucchi et al. (2022) [77] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowska, N.; Wierzbicka, M.; Jasiński, T.; Domino, M. Advances in the Diagnosis of Equine Respiratory Diseases: A Review of Novel Imaging and Functional Techniques. Animals 2022, 12, 381. https://doi.org/10.3390/ani12030381
Kozłowska N, Wierzbicka M, Jasiński T, Domino M. Advances in the Diagnosis of Equine Respiratory Diseases: A Review of Novel Imaging and Functional Techniques. Animals. 2022; 12(3):381. https://doi.org/10.3390/ani12030381
Chicago/Turabian StyleKozłowska, Natalia, Małgorzata Wierzbicka, Tomasz Jasiński, and Małgorzata Domino. 2022. "Advances in the Diagnosis of Equine Respiratory Diseases: A Review of Novel Imaging and Functional Techniques" Animals 12, no. 3: 381. https://doi.org/10.3390/ani12030381
APA StyleKozłowska, N., Wierzbicka, M., Jasiński, T., & Domino, M. (2022). Advances in the Diagnosis of Equine Respiratory Diseases: A Review of Novel Imaging and Functional Techniques. Animals, 12(3), 381. https://doi.org/10.3390/ani12030381