Cold-Pressed Aristotelia chilensis (Mol.) Stuntz Seed Oil Prevents Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD) in a High-Fat-Diet-Induced Obesity Murine Model
<p>Effect of cold-pressed maqui seed oil (MO) on total and adipose tissue weight of mice under an HFD. Animals were weighed before euthanasia (<b>a</b>), followed by an immediate measure of the liver (<b>b</b>), visceral fat (<b>c</b>), and epididymal fat (<b>d</b>) weight. Abbreviations: CD (control diet), HFD (high-fat diet), and SO (sunflower oil). Data are presented as the mean ± standard error of the mean (SEM). Statistical differences were determined using ordinary two-way ANOVA test, followed by Tukey’s comparative test: * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; **** <span class="html-italic">p</span> < 0.0001; ns: no significant differences; <span class="html-italic">n</span> = 6 mice for each group.</p> "> Figure 2
<p>Histology of liver steatosis prevention by cold-pressed maqui seed oil supplementation. (<b>a</b>) Hematoxylin and eosin (H&E) staining of paraffin liver sections displaying general architecture and cellular morphology. White arrows indicate macrovesicular steatosis and black arrows microvesicular steatosis. (<b>b</b>) Bodipy staining on a representative liver cryosection for lipid detection (green fluorescence) merged with DAPI stain (blue). Abbreviations: CD (control diet), HFD (high-fat diet), SO (sunflower oil), and MO (cold-pressed maqui seed oil); <span class="html-italic">n</span> = 6 mice for each group. Magnification of the figure is 400×.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Seed Oil, Chemical Reagents, and Standards
2.2. Identification and Quantification of Fatty Acids (FAs) Using GLC
2.3. Identification and Quantification of Tocopherols and Tocotrienols
2.4. Antioxidant Capacity Determination (H-ORACFL)
2.5. Mice Protocol
2.6. Measurements of Serum Parameters
2.7. Histological Assessment
2.8. Bodipy Stain in Liver Cryosections
2.9. Statistics
3. Results
3.1. MO Characterization
3.2. MO Effects on Tissue Weight and Biochemical Parameters of Obese Mice
3.3. Effect of Maqui Seed Oil on MASLD-Associated Liver Damage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eslam, M.; Sanyal, A.J.; George, J. International Consensus Panel MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020, 158, 1999–2014.e1. [Google Scholar] [CrossRef] [PubMed]
- Boccatonda, A.; Andreetto, L.; D’Ardes, D.; Cocco, G.; Rossi, I.; Vicari, S.; Schiavone, C.; Cipollone, F.; Guagnano, M.T. From NAFLD to MAFLD: Definition, pathophysiological basis and cardiovascular implications. Biomedicines 2023, 11, 883. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.L.; Loomba, R. From NAFLD to MASLD: Implications of the new nomenclature for preclinical and clinical research. Nat. Metab. 2024, 6, 600–602. [Google Scholar] [CrossRef] [PubMed]
- Dovale-Rosabal, G.; Espinosa, A.; Rodríguez, A.; Barriga, A.; Palomino-Calderón, A.; Romero, N.; Troncoso, R.H.; Aubourg, S.P. Effect of structured phenolic lipids with EPA/DHA and gallic acid against metabolic-associated fatty liver disease (MAFLD) in mice. Molecules 2022, 27, 7702. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrin. 2017, 42, 92–108. [Google Scholar] [CrossRef]
- Sumida, Y.; Niki, E.; Naito, Y.; Yoshikawa, T. Involvemnent of free radicals and oxidative stress in NAFLD/NASH. Free Radic. Res. 2013, 47, 869–880. [Google Scholar] [CrossRef]
- Ferramosca, A.; Di Giacomo, M.; Zara, V. Antioxidant dietary approach in treatment of fatty liver: New insights and updates. World J. Gastroenterol. 2017, 23, 4146–4157. [Google Scholar] [CrossRef]
- Vogli, S.; Naska, A.; Marinos, G.; Kasdagli, M.I.; Orfanos, P. The Effect of vitamin E supplementation on serum aminotransferases in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Nutrients 2023, 15, 3733. [Google Scholar] [CrossRef]
- García-Milla, P.; Peñalver, R.; Nieto, G.A. Review of the functional characteristics and applications of Aristotelia chilensis (maqui berry) in the Food Industry. Foods 2024, 13, 838. [Google Scholar] [CrossRef]
- Bastías-Montes, J.M.; Monterrosa, K.; Muñoz-Fariña, O.; García, O.; Acuña-Nelson, S.M.; Vidal-San Martín, C.; Quevedo-León, R.; Kubo, I.; Ávila-Acevedo, J.G.; Domínguez-López, M.; et al. Chemoprotective and antiobesity effects of tocopherols from seed oil of maqui-berry: Their antioxidative and digestive enzyme inhibition potential. Food Chem. Toxicol. 2020, 136, 111036. [Google Scholar] [CrossRef]
- Peh, H.Y.; Tan, W.S.D.; Liao, W.; Wong, W.S.F. Vitamin E therapy beyond cancer: Tocopherol versus tocotrienol. Pharmacol. Ther. 2016, 162, 152–169. [Google Scholar] [CrossRef] [PubMed]
- Kaseke, T.; Opara, U.L.; Fawole, O.A. Fatty acid composition, bioactive phytochemicals, antioxidant properties and oxidative stability of edible fruit seed oil: Effect of preharvest and processing factors. Heliyon 2020, 6, e04962. [Google Scholar] [CrossRef] [PubMed]
- IUPAC Standard Method 2.301. Preparation of fatty acid methyl esters. In Standard Methods for Analysis of Oils, Fats and Derivatives, 7th ed.; Blackwell Scientific Publications: Oxford, UK, 1987.
- American Oil Chemists’ Society (AOCS). Determination of cis-, trans-, saturated, monounsaturated, and polyunsaturated fatty acids by capillary gas liquid chromatography (GLC). Sampling and analysis of commercial fats and oils. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, 7th ed.; Official Method Ce 1j-7; AOCS: Champaign, IL, USA, 2017. [Google Scholar]
- American Oil Chemists’ Society (AOCS). Determination of tocopherols and tocotrienols in vegetable oils and fats by HPLC. In Official Methods and Recommended Practices of the American Oil Chemists Society, 5th ed.; Official Method Ce 8-89; AOCS: Champaign, IL, USA, 1997. [Google Scholar]
- Prior, R.L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC-FL) of plasma and other biological and food samples. J. Agric. Food Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Paucar, F.; Tapia, F.; Ortiz, J.; Jiménez, P.; Romero, N. Effect of the composition of extra virgin olive oils on the differentiation and antioxidant capacities of twelve monovarietals. Food Chem. 2018, 243, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Menke, A.L.; Driessen, A.; Koek, G.H.; Lindeman, J.H.; Stoop, R.; Havekes, L.M.; Kleemann, R.; Van Den Hoek, A.M. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS ONE 2014, 9, e115922. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, C.; Rodríguez, A.; Reinoso, F.; Dovale-Rosabal, G.; Romero, N.; Espinosa, A.; Pando, M.E.; Claria, B.; Valenzuela, R.; Char, C.; et al. Optimization of oil and tocopherol extraction from maqui (Aristotelia chilensis (Mol.) Stuntz) by supercritical CO2 procedure. Antioxidants 2024, 13, 845. [Google Scholar] [CrossRef]
- Rincón-Cervera, M.Á.; Valenzuela, R.; Hernández-Rodas, M.C.; Barrera, C.; Espinosa, A.; Marambio, M.; Valenzuela, A. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats. Prostaglandins Leukot. Essent. Fatty Acids 2016, 111, 25–35. [Google Scholar] [CrossRef]
- Valenzuela, B.R.; Barrera, R.C.; González-Astorga, M.; Sanhueza, C.J.; Valenzuela, B.A. Alpha linolenic acid (ALA) from rosa canina, sacha inchi and chia oils may increase ALA accretion and its conversion into n-3 LCPUFA in diverse tissues of the rat. Food Funct. 2014, 5, 1564–1572. [Google Scholar] [CrossRef]
- Habibi, E.; Baâti, T.; Njim, L.; M’Rabet, Y.; Hosni, K. Antioxidant and protective effects of extra virgin olive oil incorporated with diallyl sulfide against CCl4-induced acute liver injury in mice. Food Sci. Nutr. 2021, 9, 6818–6830. [Google Scholar] [CrossRef]
- Barrera, C.; Valenzuela, R.; Rincón, M.Á.; Espinosa, A.; Echeverría, F.; Romero, N.; González-Mañan, D.; Videla, L.A. Molecular mechanisms related to the hepatoprotective effects of antioxidant-rich extra virgin olive oil supplementation in rats subjected to short-term iron administration. Free Radic. Biol. Med. 2018, 126, 313–321. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gómez, M.; Zelber-Sagi, S.; Wong, W.S.; Dufour, J.F.; Schattenberg, J.M.; et al. A New definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Gopalam, R.; Manasa, V.; Vaishnav, S.R.; Daga, P.; Tumaney, A.W. Profiling of lipids, nutraceuticals, and bioactive compounds extracted from an oilseed rich in PUFA. Plant Foods Hum. Nutr. 2022, 77, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Marzocchi, S.; Caboni, M.F.; Pasini, F. Co-milling process of olives and oleaginous matrices with high nutritional value: A preliminary characterisation of the obtained oils. Int. J. Food Sci. Nutr. 2022, 73, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Hendawy, O.; Gomaa, H.A.M.; Hussein, S.; Alzarea, S.I.; Qasim, S.; Abdel Rahman, F.E.-Z.S.; Ali, A.T.; Ahmed, S.R. Cold-pressed raspberry seeds oil ameliorates high-fat diet triggered non-alcoholic fatty liver disease. Saudi Pharm. J. 2021, 29, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Parry, J.; Su, L.; Luther, M.; Zhou, K.; Yurawecz, M.P.; Whittaker, P.; Yu, L. Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. J. Agric. Food Chem. 2005, 53, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Juretić, N.; Sepúlveda, R.; D’Espessailles, A.; Vera, D.B.; Cadagan, C.; de Miguel, M.; González-Mañán, D.; Tapia, G. Dietary alpha- and gamma-tocopherol (1:5 ratio) supplementation attenuates adipose tissue expansion, hepatic steatosis, and expression of inflammatory markers in a high-fat-diet–fed murine model. Nutrition 2021, 85, 111139. [Google Scholar] [CrossRef]
- Tapia, G.; Silva, D.; Romero, N.; Pettinelli, P.; Dossi, C.G.; de Miguel, M.; González-Mañán, D. Role of dietary α- and γ-tocopherol from rosa mosqueta oil in the prevention of alterations induced by high-fat diet in a murine model. Nutrition 2018, 53, 1–8. [Google Scholar] [CrossRef]
- Bensussen, A.; Torres-Magallanes, J.A.; Roces de Álvarez-Buylla, E. Molecular tracking of insulin resistance and inflammation development on visceral adipose tissue. Front. Immunol. 2023, 14, 1014778. [Google Scholar] [CrossRef]
- Ngo, D.T.M.; Sverdlov, A.L.; Karki, S.; Macartney-Coxson, D.; Stubbs, R.S.; Farb, M.G.; Carmine, B.; Hess, D.T.; Colucci, W.S.; Gokce, N. Oxidative modifications of mitochondrial complex II are associated with insulin resistance of visceral fat in obesity. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E168–E177. [Google Scholar] [CrossRef]
- Herrera, E.; Barbas, C. Vitamin E: Action, metabolism and perspectives. J. Physiol. Biochem. 2001, 57, 43–56. [Google Scholar] [CrossRef]
- Sundaram, G.S.; London, R.; Manimekalai, S.; Nair, P.P.; Goldstein, P. Alpha-tocopherol and serum lipoproteins. Lipids 1981, 16, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Aoki, Y.; Kiyose, C.; Fukui, K. Tocotrienols attenuate white adipose tissue accumulation and improve serum cholesterol concentration in high-fat diet-treated mice. Molecules 2022, 27, 2188. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.Y.; Yeung, S.F.; Park, H.J.; Volek, J.S.; Bruno, R.S. Dietary α- and γ-tocopherol supplementation attenuates lipopolysaccharide-induced oxidative stress and inflammatory-related responses in an obese mouse model of nonalcoholic steatohepatitis. J. Nutr. Biochem. 2010, 21, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Tzanetakou, I.P.; Doulamis, I.P.; Korou, L.M.; Agrogiannis, G.; Vlachos, I.S.; Pantopoulou, A.; Mikhailidis, D.P.; Patsouris, E.; Vlachos, I.; Perrea, D.N. Water soluble vitamin E administration in Wistar rats with non-alcoholic fatty liver disease. Open Cardiov. Med. J. 2012, 6, 88. [Google Scholar] [CrossRef]
Systematic Name | Abbreviated Name | Content * |
---|---|---|
Myristic acid | C14:0 | 0.03 ± 0.04 |
Palmitic acid | C16:0 | 5.59 ± 0.06 |
Palmitoleic acid | C16:1 9c | 0.08 ± 0.00 |
Stearic acid | C18:0 | 3.29 ± 0.01 |
Oleic acid | C18:1 9c | 32.31 ± 0.04 |
Cis-Vaccenic acid | C18:1 7c | 0.75 ± 0.00 |
Linoleaidic acid | C18:2 9t 12t | 0.11 ± 0.00 |
Linoleic acid Nonadecenoic acid Arachidic acid | C18:2 9c 12c C19:1 7c C20:0 | 46.41 ± 0.05 0.09 ± 0.03 0.20 ± 0.00 |
α-Linolenic acid | C 18:3 9c 12c 15c | 10.83 ± 0.03 |
Behenoic acid | C 22:0 | 0.31 ± 0.01 |
Total saturated fatty acids (TSFAs) | 9.42 | |
Total monounsaturated fatty acids (TMUFAs) | 33.23 | |
Total polyunsaturated fatty acids (TPUFAs) | 57.35 | |
Total fatty acids n-3 (TFAs n-3) | 10.83 |
MO Concentration (mg·kg−1 Oil) | ||||
---|---|---|---|---|
α-Tocopherol | α-Tocotrienol | β-Tocopherol | γ-Tocopherol | δ-Tocopherol |
339.09 ± 5.15 | Traces | Traces | 135.52 ± 3.50 | Traces |
Sample | H-ORACFL (μmol TROLOX Equivalents·g−1 Oil) |
---|---|
MO | 6.66 ± 0.19 |
Biomarker | CD+SO | CD+MO | HFD+SO | HFD+MO |
---|---|---|---|---|
Fasting glucose (mg·dL−1) | 180.6 ± 11.6 ac | 175.0 ± 3.7 ab | 205.5 ± 10.2b bd | 200.8 ± 8.2 cd |
iGTT (AUC·g−1) | 749.6 ± 36.1 a | 818.8 ± 35.7 a | 735.3 ± 37.9 a | 839.2 ± 64.0 a |
Insulin (µg·L−1) | 1.19 ± 0.15 a | 1.03 ± 0.27 a | 1.48 ± 0.15 a | 1.10 ± 0.10 a |
HOMA-IR | 13.1 ± 3.8 a | 11.2 ± 7.2 a | 19.0 ± 5.7 a | 13.7 ± 2.2 a |
GPT (UI·L−1) | 30.0 ± 2.7 a | 26.7 ± 4.7 b | 71.8 ± 5.0 b | 34.2 ± 2.6 c |
GOT (UI·L−1) | 70.3 ± 8.7 a | 58.3 ± 5.7 a | 83.7 ± 7.6 a | 59.7 ± 6.8 a |
TG (mg·dL−1) | 49.0 ± 2.8 a | 62.0 ± 4.2 a | 53.5 ± 5.7 a | 62.7 ± 4.3 a |
T-Chol (mg·dL−1) | 172.3 ± 5.7 a | 159.4 ± 2.9 ab | 185.7 ± 5.7 bc | 187.6 ± 3.2 c |
HDL-Chol (mg·dL−1) | 103.3 ± 7.8 a | 110.9 ± 4.5 ab | 116.4 ± 5.0 bc | 130.9 ± 3.8 c |
Histological Feature | CD+SO | CD+MO | HFD+SO | HFD+MO |
---|---|---|---|---|
Steatosis | ||||
Macrovesicular | 1 | 1 | 2 | 1 |
Microvesicular | 0 | 1 | 3 | 2 |
Hypertrophy | 0 | 0 | 1 | 0 |
Inflammation | ||||
Number of inflammatory foci/field | 0 | 0 | 0 | 0 |
Total score | 1/12 a | 2/12 a | 6/12 b | 3/12 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claria, B.; Espinosa, A.; Rodríguez, A.; Dovale-Rosabal, G.; Bucarey, J.L.; Pando, M.E.; Romero, N.; Reinoso, F.; Sánchez, C.; Valenzuela, R.; et al. Cold-Pressed Aristotelia chilensis (Mol.) Stuntz Seed Oil Prevents Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD) in a High-Fat-Diet-Induced Obesity Murine Model. Antioxidants 2024, 13, 1384. https://doi.org/10.3390/antiox13111384
Claria B, Espinosa A, Rodríguez A, Dovale-Rosabal G, Bucarey JL, Pando ME, Romero N, Reinoso F, Sánchez C, Valenzuela R, et al. Cold-Pressed Aristotelia chilensis (Mol.) Stuntz Seed Oil Prevents Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD) in a High-Fat-Diet-Induced Obesity Murine Model. Antioxidants. 2024; 13(11):1384. https://doi.org/10.3390/antiox13111384
Chicago/Turabian StyleClaria, Benjamín, Alejandra Espinosa, Alicia Rodríguez, Gretel Dovale-Rosabal, José Luis Bucarey, María Elsa Pando, Nalda Romero, Francisca Reinoso, Camila Sánchez, Rodrigo Valenzuela, and et al. 2024. "Cold-Pressed Aristotelia chilensis (Mol.) Stuntz Seed Oil Prevents Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD) in a High-Fat-Diet-Induced Obesity Murine Model" Antioxidants 13, no. 11: 1384. https://doi.org/10.3390/antiox13111384
APA StyleClaria, B., Espinosa, A., Rodríguez, A., Dovale-Rosabal, G., Bucarey, J. L., Pando, M. E., Romero, N., Reinoso, F., Sánchez, C., Valenzuela, R., Ribeiro, C. H., & Aubourg, S. P. (2024). Cold-Pressed Aristotelia chilensis (Mol.) Stuntz Seed Oil Prevents Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD) in a High-Fat-Diet-Induced Obesity Murine Model. Antioxidants, 13(11), 1384. https://doi.org/10.3390/antiox13111384