A New Algorithm Based on Colouring Arguments for Identifying Impossible Polyomino Tiling Problems
<p>Mutilated checkerboard.</p> "> Figure 2
<p>Three different black–white colouring schemes for the <math display="inline"><semantics> <mrow> <mn>8</mn> <mo>×</mo> <mn>8</mn> </mrow> </semantics></math> square: (<b>a</b>) Checkerboard colouring, (<b>b</b>) Row-wise colouring, (<b>c</b>) Diagonal colouring.</p> "> Figure 3
<p>Defining a checkerboard colouring.</p> "> Figure 4
<p>Parity equivalent 8-ominoes: (<b>a</b>) <math display="inline"><semantics> <msub> <mi>P</mi> <mn>1</mn> </msub> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <msub> <mi>P</mi> <mn>2</mn> </msub> </semantics></math>.</p> "> Figure 5
<p>Illustration of Proposition 1 (ii) and Theorem 1. Starting with the top black square with parity <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mo>+</mo> <mn>1</mn> </mrow> </semantics></math>, as we descend each level of the tree the parity increases by <math display="inline"><semantics> <mrow> <mo>+</mo> <mn>1</mn> </mrow> </semantics></math>. At each level the shapes are parity equivalent <span class="html-italic">n</span>-ominoes, and have minimal area with respect to their parity. Cells with a red border indicate which cells were added to the polyomino in the previous level to construct the corresponding polyomino at the current level.</p> "> Figure 6
<p>Illustration of Proposition 2: (<b>a</b>) A region <span class="html-italic">R</span> that is not tileable with dominoes, (<b>b</b>) A region <span class="html-italic">R</span> that is tileable with dominoes.</p> "> Figure 7
<p>The seven free checkerboard coloured tetrominoes with parities: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>5</mn> </msub> <mo>=</mo> <mo>±</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Tiling a square shaped region using 15 T-shaped tetrominoes: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mo>+</mo> <mn>12</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>5</mn> </msub> <mo>=</mo> <mo>±</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Possible ways of summing five elements from <math display="inline"><semantics> <mrow> <mo>{</mo> <mo>−</mo> <mi>p</mi> <mo>,</mo> <mo>+</mo> <mi>p</mi> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 10
<p>Target regions and tilings for Example 7 (<b>a</b>,<b>b</b>), Example 8 (<b>c</b>,<b>d</b>), and Example 9 (<b>e</b>,<b>f</b>).</p> "> Figure 10 Cont.
<p>Target regions and tilings for Example 7 (<b>a</b>,<b>b</b>), Example 8 (<b>c</b>,<b>d</b>), and Example 9 (<b>e</b>,<b>f</b>).</p> ">
Abstract
:1. Introduction
2. Preliminaries
- (i)
- Parity equivalent n-ominoes have the same number of black squares and the same number of white squares.
- (ii)
- Consider the set of all free polyominoes. The parities of polyominoes in this set take on all possible values in .
- (iii)
- Consider an rectangle in . If is even the parity of the rectangle is 0. If is odd the parity is .
- (iv)
- Consider a polyomino with area and parity . Then is odd (resp. even) if and only if is odd (resp. even) (we avoid using the term ‘parity’ here in the usual sense to avoid confusion with its alternate definition in this article).
- (v)
- Let the number of black cells and white cells of a checkerboard coloured polyomino with area be and , respectively. If the parity of is , then , and .
3. Parity Violations
3.1. A Sufficient Condition for a Non-Tileable Region
3.2. Combinatorial Considerations
- (i)
- All possible sums of elements drawn from are given by
- (ii)
- The number of sums we can form in the combinatorial problem is given by
- (iii)
- Consider a tiling problem using copies of each free polyomino for , where each polyomino has parity equivalent polyominoes. If the tiling problem yields a parity violation then the number of equivalent parity violation problems is given by:
- (i)
- If the number of occurrences of in the sum is j, , then the number of occurrences of in the sum is , yielding the sums
- (ii)
- From (i) we see that the total number of sums of elements drawn from the set is given by . The result then follows if we apply the Fundamental Counting Principle over all sets for .
- (iii)
- The number of combinations of parity equivalent polyominoes taken at a time with repetition is given by ([20], p. 36). Thus, applying the Fundamental Counting Principle again over all F equivalence classes yields the result.
4. Linear Diophantine Equation Approach
- (i)
- , where
- (ii)
- but there is no solution to the following linear Diophantine equation in unknowns :
- (iii)
- There exists one or more solutions to the linear Diophantine equation in (ii), but none of the solutions satisfy the bounds
Algorithm 1 An algorithm for finding all possible parity violations of a tiling problem |
|
5. Numerical Results
- x = Diophantine_nd_nonnegative(a,b)
- x = Diophantine_nd_positive(a,b)
- [ S1, S2 ] = pv_search ( par, ord, p, c ),
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Some Polyomino Families
‘staircase-shapes’: , |
‘pyramid-shapes’: , |
‘diamond-shapes’: , |
‘Aztec-diamond-shapes’: , |
‘4-notched-square-shapes’: , |
‘2-notched-square-shapes’: , |
‘notched-square-shapes’: , |
‘square-shapes’: , |
‘cross-shapes’: , |
‘parallelogram-shapes’: , |
‘cross-in-square-shapes’: , |
‘square-in-square-shapes’: , |
‘minimal-area-shapes’: , |
‘jagged-square-shapes’: , |
Appendix B. MATLAB Solvers for Linear Diophantine Equations
References
- Golomb, S. Polyominoes; Scribner: New York, NY, USA, 1965. [Google Scholar]
- Golomb, S. Polyominoes, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar] [CrossRef]
- Grünbaum, B.; Shephard, G. Tilings and Patterns; W.H. Freeman and Company: New York, NY, USA, 1987; Chapter 9. [Google Scholar]
- Grünbaum, B.; Shephard, G. Tilings and Patterns, 2nd ed.; Dover Publications: New York, NY, USA, 2016. [Google Scholar]
- Gardner, M. Time Travel and Other Mathematical Bewilderments; W. H. Freeman and Company: New York, NY, USA, 1988. [Google Scholar]
- Gardner, M. Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi. Martin Gardner’s First Book of Mathematical Puzzles and Games. In New Martin Gardner Mathematical Library; Cambridge University Press: Cambridge, UK, 2009; Volume 1. [Google Scholar]
- Gardner, M. Sphere packing, Lewis Carroll, and Reversi. Martin Gardner’s new mathematical diversions. In New Martin Gardner Mathematical Library; Cambridge University Press: Cambridge, UK, 2009; Volume 3. [Google Scholar]
- Golomb, S. Checker boards and polyominoes. Amer. Math. Mon. 1954, 61, 675–682. [Google Scholar] [CrossRef]
- Ardila, F.; Stanley, R. Tilings. Math. Intell. 2010, 32, 32–43. [Google Scholar] [CrossRef]
- Conway, J.; Lagarias, J. Tiling with polyominoes and combinatorial group theory. J. Combin. Theory Ser. A 1990, 53, 183–208. [Google Scholar] [CrossRef] [Green Version]
- Reid, M. Tile homotopy groups. L’Enseignement Mathématique 2003, 49, 123–155. [Google Scholar] [CrossRef]
- Lilly, D. Complexity of solvable cases of the decision problem for predicate calculus. In Proceedings of the 19th Annual Symposium on Foundations of Computer Science, Ann Arbor, MI, USA, 16–18 October 1978; pp. 35–47. [Google Scholar]
- Pak, I. Ribbon tile invariants. Trans. Amer. Math. 2000, 352, 5525–5561. [Google Scholar] [CrossRef] [Green Version]
- Pak, I. Tile invariants: New horizons. Theoret. Comput. Sci. 2003, 303, 303–331. [Google Scholar] [CrossRef] [Green Version]
- Thurston, W. Conway’s Tiling Groups. Amer. Math. Mon. 1990, 97, 757–773. [Google Scholar] [CrossRef]
- Hall, P. On representatives of subsets. J. Lond. Math. Soc. 1935, s1-10, 26–30. [Google Scholar] [CrossRef]
- Kirillovs, J. Polyomino coloring and complex numbers. Theoret. Comput. Sci. 2008, 400, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Tulleken, H. Polyominoes: Shapes and Tilings. Self-Published Book (Version 3.3). Available online: https://www.researchgate.net/publication/333296614_Polyominoes (accessed on 13 January 2022).
- Garey, M.; Johnson, D. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman and Company: San Francisco, CA, USA, 1979. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 1957; Volume 1. [Google Scholar]
- Mordell, L. Diophantine Equations. In Pure and Applied Mathematics, 1st ed.; Academic Press: London, UK, 1969; Volume 30. [Google Scholar]
- Burkardt, J. jvburkardt/polyomino_parity: Initial Release. 2022. Available online: https://zenodo.org/record/5851095#.Yg2y1JYRWUk (accessed on 13 January 2022).
- Burkardt, J. jvburkardt/polyominoes: Initial Release. 2022. Available online: https://zenodo.org/record/5851118#.Yg21vJYRWUk (accessed on 13 January 2022).
- Garvie, M.; Burkardt, J. A new mathematical model for tiling finite regions of the plane with polyominoes. Contrib. Discret. Math. 2020, 15, 95–131. [Google Scholar] [CrossRef]
- Busche, M. Solving Polyomino and Polycube Puzzles. Algorithms, Software, and Solutions. Available online: http://www.mattbusche.org/blog/article/polycube/ (accessed on 13 January 2022).
- de Bruijn, N.G. Programmeren van de pentomino puzzle. Euclides 1971, 47, 90–104. [Google Scholar]
- Fletcher, J. A program to solve the Pentomino problem by the recursive use of macros. Commun. ACM 1965, 8, 621–623. [Google Scholar] [CrossRef]
- Knuth, D. Dancing Links. In Millennial Perspectives in Computer Science, Proceedings of the 1999 Oxford-Microsoft Symposium in Honour of Professor Sir Antony Hoare, Burlington, VT, USA, 13–18 June 1999; Davies, J., Roscoe, B., Woodcock, J., Eds.; Cornerstones of Computing, Palgrave Macmillan: London, UK, 2000; p. 432. [Google Scholar]
- Castiglione, G.; Frosini, A.; Restivo, A.; Rinaldi, S. Enumeration of L-convex polyominoes by rows and columns. Theoret. Comput. Sci. 2005, 347, 336–352. [Google Scholar] [CrossRef] [Green Version]
- Del Lungo, A.; Duchi, E.; Frosini, A.; Rinaldi, S. On the generation and enumeration of some classes of convex polyominoes. Electron. J. Combin. 2004, 11, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Delest, M.P.; Viennot, G. Algebraic languages and polyominoes enumeration. Theoret. Comput. Sci. 1984, 34, 169–206. [Google Scholar] [CrossRef] [Green Version]
- Feretić, S. A perimeter enumeration of column-convex polyominoes. Discret. Math. Theor. Comput. Sci. 2007, 9, 57–83. [Google Scholar] [CrossRef]
- Golomb, S.; Klarner, D. Polyominoes. In Handbook of Discrete and Computational Geometry, 2nd ed.; Goodman, J., O’Rourke, J., Eds.; Chapman & Hall/CRC: Atlanta, GA, USA, 2004; pp. 331–352. [Google Scholar] [CrossRef]
- Goupil, A.; Cloutier, H.; Nouboud, F. Enumeration of polyominoes inscribed in a rectangle. Discret. Appl. Math. 2010, 158, 2014–2023. [Google Scholar] [CrossRef] [Green Version]
- Guttman, A. (Ed.) History and introduction to polygon models and polyominoes. In Polygons, Polyominoes and Polycubes; Lecture Notes in Physic; Springer: Dordrecht, The Netherlands, 2009; Volume 775. [Google Scholar] [CrossRef]
- Klarner, D.; Rivest, R. A procedure for improving the upper bound for the number of n-ominoes. Can. J. Math. 1973, 25, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Klarner, D.; Rivest, R. Asymptotic bounds for the number of convex n-ominoes. Can. J. Math. 1974, 8, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Leroux, P.; Rassart, E.; Robitaille, A. Enumeration of symmetry classes of convex polyominoes in the square lattice. Adv. Appl. Math. 1998, 21, 343–380. [Google Scholar] [CrossRef] [Green Version]
- Bousquet-Mélou, M. Codage des polyominos convexes et équations pour l'énumération suivant l'aire. Discret. Appl. Math. 1994, 48, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Redelmeier, D. Counting polyominoes: Yet another attack. Discret. Math. 1981, 36, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Chasalow, S.; Brand, R. Algorithm AS 299: Generation of Simplex Lattice Points. J. R. Stat. Soc. Ser. C 1995, 44, 534–545. [Google Scholar] [CrossRef]
# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 9 | 13 | 18 | 22 | 27 | 31 | 36 | 40 | 45 | 49 | 54 | 58 | |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | |
26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | |
# | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
63 | 67 | 72 | 76 | 81 | 85 | 90 | 94 | 99 | 103 | 108 | 112 | 117 | |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | |
13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
# | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
3 | 16 | 29 | 42 | 55 | 68 | |
1 | 1 | 1 | 1 | 1 | 1 | |
1 | 1 | 1 | 1 | 1 | 1 | |
23 | 19 | 15 | 11 | 7 | 3 |
# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | |
3 | 4 | 12 | 13 | 21 | 22 | 30 | 31 | 39 | 40 | |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | |
2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
9 | 9 | 7 | 7 | 5 | 5 | 3 | 3 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garvie, M.R.; Burkardt, J. A New Algorithm Based on Colouring Arguments for Identifying Impossible Polyomino Tiling Problems. Algorithms 2022, 15, 65. https://doi.org/10.3390/a15020065
Garvie MR, Burkardt J. A New Algorithm Based on Colouring Arguments for Identifying Impossible Polyomino Tiling Problems. Algorithms. 2022; 15(2):65. https://doi.org/10.3390/a15020065
Chicago/Turabian StyleGarvie, Marcus R., and John Burkardt. 2022. "A New Algorithm Based on Colouring Arguments for Identifying Impossible Polyomino Tiling Problems" Algorithms 15, no. 2: 65. https://doi.org/10.3390/a15020065
APA StyleGarvie, M. R., & Burkardt, J. (2022). A New Algorithm Based on Colouring Arguments for Identifying Impossible Polyomino Tiling Problems. Algorithms, 15(2), 65. https://doi.org/10.3390/a15020065