Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes
<p>(<b>a</b>) Giant Connected Component (GCC) uniting 423 proteins. Composite proteins are indicated using the labels C1–C13. Communities within the GCC are labelled with their consensus function. Occasionally, members of a community are present in two different isoforms (e.g., “Polyketide Cyclases” are long form and short form); (<b>b</b>) A “lego diagram” of the block structure of the proteins and how gene remodelling provides a path connecting all the proteins in this GCC. Homologous protein parts are aligned in the same column. The rows are the different kinds of genes. Occasionally, in order to facilitate lining the blocks up, it was necessary to split the proteins. In those cases, black lines join contiguous protein parts.</p> "> Figure 2
<p>Section of alignments of clique 2 and 3 to C1. Clique 3 includes the first 27 sequences which clearly align to the <span class="html-italic">N</span>-terminus of C1, shown here as Q67G32. Clique 2 includes the last 40 sequences that align to the <span class="html-italic">C</span>-terminus of C1. Figure taken from section of result shown on Seaview.</p> "> Figure 3
<p>Sequence similarity network displaying significant similarities (network edges) detected by BLAST between the gene sequences (network nodes).</p> "> Figure 4
<p>Maximum likelihood trees generated by Seaview. Both phylogenetic trees contain the six composite genes, indicated in blue font. The coloured squares indicate the domain architecture of the genes.</p> "> Figure 5
<p>Two-rooted fusion graph. This two-rooted graph was constructed using the two phylogenetic trees from <a href="#computation-03-00114-f004" class="html-fig">Figure 4</a>. The trees were mid-point rooted and merged using Adobe Illustrator. The two roots are marked I and II. The grey dot, labelled “Fusion node” indicates the approximate location of the fusion event. The coloured squares display the domain architecture of the genes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case 1
2.2. Case 2
2.3. BLAST Analysis and Network Construction
2.4. Identification of Composite Genes
2.5. Investigation of Domain Architecture
2.6. BLAST Analysis and Sequence Alignments
2.7. N-Rooted Fusion Graph Construction
3. Results and Discussion
3.1. Case 1: Polyketide Biosynthetic Genes
3.2. Composite Gene 1 Analysis
3.3. GCC Analysis
3.4. Case 2: Antibiotic Resistance Genes
3.5. Sequence Alignments
3.6. Phylogenetic Trees
3.7. N-Rooted Graph
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Dagan, T. Phylogenomic networks. Trends Microbiol. 2011, 19, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C. On the Origin of Species 1859 Chapter IV “Character of Natural Selection” in the sub-section on “Divergence of Character.”; John Murray: London, UK, 1859. [Google Scholar]
- Huson, D.H.; Rupp, R.; Scornavacca, C. Phylogenetic Networks-Concepts, Algorithms and Applications; Cambridge University Press: Cambridge, UK, 2011; Volume 1. [Google Scholar]
- Bapteste, E.; van Iersel, L.; Janke, A.; Kelchner, S.; Kelk, S.; McInerney, J.O.; Morrison, D.A.; Nakhleh, L.; Steel, M.; Stougie, L.; et al. Networks: Expanding evolutionary thinking. Cell 2013, 29, 439–441. [Google Scholar]
- Myers, C.L.; Robson, D.; Wible, A.; Hibbs, M.A.; Chiriac, C.; Thessfeld, C.L.; Dolinski, K.; Troyanskaya, O.G. Discovery of biological networks from diverse functional genomic data. Genome Biol. 2005, 6. [Google Scholar] [CrossRef]
- Larremore, D.B.; Clauset, A.; Buckee, C.O. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes. PloS Comput. Biol. 2013, 9. [Google Scholar] [CrossRef]
- Jordan, W.C.; Turnquist, M.A. A stochastic, dynamic network model for railroad car distribution. Transp. Sci. 1983, 17, 123–145. [Google Scholar] [CrossRef]
- Viswanath, B.; Mislove, A.; Cha, M.; Gummadi, K.P. On the evolution of user interactions in Facebook. In Proceedings of the 2nd ACM Workshop on Online Social Networks (WOSN’09), Barcelona, Spain, 17 August 2009; pp. 37–42.
- Dagan, T.; Martin, W. Getting a better picture of microbial evolution en route to a network of genomes. Philos. Trans. Royal Soc. Boil. Sci. 2009, 364, 2187–2196. [Google Scholar] [CrossRef]
- Halary, S.; Leigh, J.W.; Cheaib, B.; Lopez, P.; Bapteste, E. Network analyses structure genetic diversity in independent genetic worlds. Proc. Natl. Acad. Sci. USA 2010, 107, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Haggerty, L.; Jachiet, P.A.; Hanage, W.P.; Fitzpatrick, D.A.; Lopez, F.; O’Connell, M.J.; Pisani, D.; Wilkinson, M.; Bapteste, E.; McInerney, J.O. A pluralistic account of homology: Adapting the models to the data. Mol. Boil. Evol. 2013, 22. [Google Scholar] [CrossRef]
- Alvarez-Ponce, D.; Lopez, P.; Bapteste, E.; McInerney, J.O. Gene similarity networks provide tools for understanding eukaryotic origins and evolution. Proc. Natl. Acad. Sci. USA 2013, 110, 1594–1603. [Google Scholar] [CrossRef]
- Halary, S.; Mc Inerney, J.O.; Lopez, P.; Bapteste, E. EGN: A wizard for construction of gene and genome similarity networks. BMC Evol. Biol. 2013, 13. [Google Scholar] [CrossRef]
- Fondi, M.; Fani, R. The horizontal flow of plasmid resistome: Clues from inter-generic similarity networks. Wiley 2010, 12, 3228–3242. [Google Scholar]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.H.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, M.P.; Nagulapalli, K.; Palakal, M.J. Cliques for the identification of gene signatures for colorectal cancer across population. BMC Syst. Biol. 2012, 6. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Betrán, E.; Thornton, K.; Wang, W. The origin of new genes: Glimpses from the young and old. Nat. Rev. Genet. 2003, 4, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Durrens, P.; Nikolski, M.; Sherman, D. Fusion and Fission of Genes Define a Metric between Fungal Genomes. PloS Comput. Biol. 2008, 4. [Google Scholar] [CrossRef]
- Kummerfeld, S.K.; Teichmann, S.A. Relative rates of gene fusion and fission in multi-domain proteins. Trends Genet. 2005, 21, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Long, M.Y. A new function evolved from gene fusion. Genome Res. 2000, 10, 1655–1657. [Google Scholar] [CrossRef] [PubMed]
- Snel, B.; Bork, P.; Huynen, M. Genome evolution—Gene fusion versus gene fission. Trends Genet. 2000, 16, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Marcotte, E.M.; Pellegrini, M.; Ng, H.L.; Rice, D.W.; Yeates, T.O.; Eisenberg, D. Detecting protein function and protein-protein interactions from genome sequences. Science 1999, 285, 751–753. [Google Scholar] [CrossRef] [PubMed]
- Civjan, N. Natural Products in Chemical Biology; Wiley: Hoboken, NJ, USA, 2012; pp. 143–189. [Google Scholar]
- Ridley, C.P.; Lee, H.Y.; Khosla, C. Evolution of polyketide synthases in bacteria. Proc. Natl. Acad. Sci. USA 2007, 105, 4595–4600. [Google Scholar] [CrossRef]
- Wright, G.D.; Poinar, H. Antibiotic resistance is ancient: Implications for drug discovery. Trends Microbiol. 2012, 20, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Galerunti, R.A. The Antibiotic Paradox: How Miracle Drugs Are Destroying the Miracle. Health Values 1994, 18, 60–61. [Google Scholar]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yi, G.S. PKMiner: A database for exploring type II polyketide synthases. BMC Microbiol. 2012, 12. [Google Scholar] [CrossRef] [PubMed]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; de Pascale, G.; Ejim, L.; et al. The Comprehensive Antibiotic Resistance Database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Jachiet, P.A.; Pogorelcnik, R.; Berry, A.; Lopez, P.; Bapteste, E. MosaicFinder: Identification of fused gene families in sequence similarity networks. Bioinformatics 2013, 29, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Marchler-Bauer, A. CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011, 39D, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Galtier, N.; Gouy, M.; Gautier, C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Computer Appl. Biosci. 1996, 12, 543–548. [Google Scholar]
- Ames, B.D.; Korman, T.P.; Zhang, W.; Smith, P.; Vu, T.; Tang, Y.; Tsai, S.C. Crystal structure and functional analysis of tetracenomycin ARO/CYC: Implications for cyclisation specificity of aromatic polyketides. Proc. Natl. Acad. Sci. USA 2008, 105, 5349–5354. [Google Scholar] [CrossRef] [PubMed]
- Britannica Encyclopedia (2014) “Homology”. Encyclopaedia Britannica Online, Encyclopædia Britannica Inc. 2014. Available online: http://www.britannica.com/EBchecked/topic/270557/homology (accessed on 10 April 2014).
- Brown, J.R. Ancient horizontal gene transfer. Nat. Rev. Genet. 2003, 4, 121–132. [Google Scholar] [CrossRef] [PubMed]
- McInerney, J.O.; Cotton, J.A.; Pisani, D. The prokaryotic tree of life: past, present ... and future? Trends Ecol. Evol. 2008, 23, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Bapteste, E.; O’Malley, M.A.; Beiko, R.G.; Ereshefsky, M.; Gogarten, J.P.; Franklin-Hall, L.; Lapointe, F.J.; Dupre, J.; Dagan, T.; Boucher, Y.; et al. Prokaryotic evolution and the tree of life are two different things. Biol. Direct. 2009, 4. [Google Scholar] [CrossRef] [Green Version]
- Bapteste, E.; Lopez, P.; Bouchard, F.; Baquero, F.; McInerney, J.O.; Burian, R.M. Evolutionary analyses of non-genealogical bonds produced by introgressive descent. Proc. Natl. Acad. Sci. USA 2012, 109, 18266–18272. [Google Scholar] [CrossRef] [PubMed]
- Mitelman, F.; Johansson, B.; Mertens, F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nat. Genet. 2004, 36, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Long, M. A New Function Evolved from Gene Fusion. Genome Res. 2000, 10, 1655–1657. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Oh, S.H.; Coleman, D.A.; Hoyer, L.L. ALS51, a newly discovered gene in the Candida albicans ALS family, created by intergenic recombination: Analysis of the gene and protein, and implications for evolution of microbial gene families. FEMS Immunol. Med. Microbiol. 2011, 61, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Micci, F.; Thorsen, J.; Panagopoulos, I.; Nyquist, K.B.; Zeller, B.; Tierens, A.; Heim, S. High-throughput sequencing identifies an NFIA/CBFA2T3 fusion gene in acute erythroid leukemia with t(1;16)(p31;q24). Leukemia 2013, 27, 980–982. [Google Scholar] [CrossRef] [PubMed]
- McInerney, J.O.; Pisani, D.; Bapteste, E.; O’Connell, M.J. The public goods hypothesis for the evolution of life on Earth. Biol. Direct. 2011, 6. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coleman, O.; Hogan, R.; McGoldrick, N.; Rudden, N.; McInerney, J.O. Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes. Computation 2015, 3, 114-127. https://doi.org/10.3390/computation3020114
Coleman O, Hogan R, McGoldrick N, Rudden N, McInerney JO. Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes. Computation. 2015; 3(2):114-127. https://doi.org/10.3390/computation3020114
Chicago/Turabian StyleColeman, Orla, Ruth Hogan, Nicole McGoldrick, Niamh Rudden, and James O. McInerney. 2015. "Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes" Computation 3, no. 2: 114-127. https://doi.org/10.3390/computation3020114
APA StyleColeman, O., Hogan, R., McGoldrick, N., Rudden, N., & McInerney, J. O. (2015). Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes. Computation, 3(2), 114-127. https://doi.org/10.3390/computation3020114