Remote-Sensing Image Classification Based on an Improved Probabilistic Neural Network
"> Graphical abstract
">
<p>Outline of PNN (R, Q, and K represent number of elements in input vector, input/target pairs, and classes of input data, respectively. IW and LW represent input weight and layer weight, respectively).</p> ">
<p>The outline of our method.</p> ">
<p>Using normalization before PCA.</p> ">
<p>Pauli image of sub-area of San Francisco.</p> ">
<p>Basic span image and three channels image.</p> ">
<p>Parameters of H/A/Alpha decomposition.</p> ">
<p>Parameters of H/A/Alpha decomposition.</p> ">
<p>GLCM-based features of <span class="html-italic">T</span><sub>11.</sub></p> ">
<p>GLCM-based features of <span class="html-italic">T</span><sub>22.</sub></p> ">
<p>GLCM-based features of <span class="html-italic">T</span><sub>33.</sub></p> ">
Abstract
:1. Introduction
2. Pauli Decomposition
2.1. Basic Introduction
2.2. Coherence Matrix
3. Feature Extraction
3.1. Span
3.2. H/A/Alpha Decomposition
3.3. Texture Features
3.4. Total Features
4. Probabilistic NN
4.1. Mechanism of PNN
4.2. PNN Structure
4.3. Shortcomings of Traditional PNN
5. A Novel Method of Weights/Biases Setting
5.1. Feature Reduction
5.2. Random Division
5.3. Optimization by Brent’s Search
6. Terrain Classification
- •Number of features: 19
- ♦ Number of reduced features by PCA: 11 (obtained by performing PCA on total available pairs)
- •Location of Sub San Francisco Area:
- X-range: 1–600
- Y-range: 1–600
- •Location of Training/Test Rectangular Area (the first and second pixels denote the coordinate of the left-upper point of the rectangle, the third and forth pixels denote the width and length of the rectangle)
- Sea:
- Training Area1 [100 500 60 60]
- Training Area2 [300 200 60 60]
- Test Area [500 50 60 60]
- Urban:
- Training Area1 [450 400 60 60]
- Training Area2 [500 250 60 60]
- Test Area [500 530 60 60]
- Vegetated
- Training Area1 [50 50 60 60]
- Training Area2 [50 250 60 60]
- Test Area [320 450 60 60]
- •Parameters of GLCM
- local area: 5 × 5 (pixels)
- Number of gray levels: 8
- Offset: [0 1]
- •Properties of available training/target pairs
- Pairs = 21,600
- R = 11
- K = 3
- P (size 11 × 21,600)
- T (size 3 × 21,600)
- ♦ Training Ratio: 0.01 (obtained by simple iterative tests)
- •Validation Ratio: 0.99
- •Properties of NN optimized by our approach
- •Q = Pairs × trainRatio = 216
- ♦ b = 4.73(obtained by BS method)
- •IW = P (size: 216 × 11)
- •LW = T (size: 3 × 216)
- •Properties of BS Method
- Tolerance X Value: 1e–3
- Tolerance Function Value: 1e–5
- Maximum Iterative Steps: 30
- •Hardware: Pentium 4 CPU 1.66 GHz, 512 MB of RAM
- •Software: PolSARpro v4.0, Neural Network Toolbox of Matlab 7.8(R2009)
6.1. Denoising by Lee Filter
6.2. Full Features Set
6.3. Feature Reduction by PCA
6.4. Training Preparation
6.5. Weights/Biases Setting
6.6. Application to the Whole Image
6.7. Comparison with Other Approaches
7. Crop Classification
- •Number of features: 19
- ♦ Number of reduced features by PCA: 13 (obtained by performing PCA on total available pairs)
- •Location of Train/Test Rectangular Area
- Bare Soil 1:
- Train Area [240 300 20 20]
- Test Area [770 490 20 20]
- Bare Soil 2
- Train Area [335 440 20 20]
- Test Area [420 425 20 20]
- Barley
- Train Area [285 500 20 20]
- Test Area [765 425 20 20]
- Forest
- Train Area [959 155 20 20]
- Test Area [900 490 20 20]
- Grass
- Train Area [535 240 20 20]
- Test Area [500 303 20 20]
- Lucerne
- Train Area [550 495 20 20]
- Test Area [505 550 20 20]
- Peas
- Train Area [523 330 20 20]
- Test Area [436 200 20 20]
- Potatoes
- Train Area [32 40 20 20]
- Test Area [655 307 20 20]
- Rapeseed
- Train Area [188 200 20 20]
- Test Area [280 250 20 20]
- Stem Beans
- Train Area [800 350 20 20]
- Test Area [777 384 20 20]
- Sugar beet
- Train Area [877 444 20 20]
- Test Area [650 225 20 20]
- Water
- Train Area [965 50 20 20]
- Test Area [961 201 20 20]
- Wheat
- Train Area [780 710 20 20]
- Test Area [700 520 20 20]
- •Parameters of GLCM
- local area: 5×5 (pixels)
- Number of gray levels: 8
- Offset: [0 1]
- •Properties of available training/target pairs
- Pairs = 5200
- R = 13
- K = 13
- P (size 13 × 5200)
- T (size 13 × 5200)
- ♦ Training Ratio: 0.2 (obtained by simple iterative tests)
- •Validation Ratio: 0.8
- •Properties of NN optimized by our approach
- •Q = Pairs × trainRatio = 1040
- ♦ b = 1.0827(obtained by BS method)
- •IW = P (size: 13 × 1040)
- •LW = T (size: 13 × 1040)
- •Properties of BS Method
- Tolerance X Value: 1e–3
- Tolerance Function Value: 1e–5
- Maximum Iterative Steps: 30
- •Hardware: Pentium 4 CPU 1.66 GHz, 512 MB of RAM
- •Software: PolSARpro v4.0, Neural Network Toolbox of Matlab 7.8(R2009)
7.1. Refine Lee Filter
7.2. Full Features
7.3. Feature Reduction
7.4. Training Preparation
7.5. Weights/Biases Setting
7.6. Classification Results
8. Discussion
8.1. Single Type of Feature Set versus Combined Feature Sets
8.2. With and without Random Division
8.3. With and without PCA
9. Conclusions
References and Notes
- Pellizzeri, T.M. Classification of polarimetric SAR images of suburban areas using joint annealed segmentation and “H/A/α” polarimetric decomposition. ISPRS J. Photogramm. Remote Sens 2003, 58, 55–70. [Google Scholar]
- Lee, J.S.; Grunes, M.R.; Kwok, R. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution. Int. J. Remote Sens 1994, 15, 2299–2311. [Google Scholar]
- Shimoni, M.; Borghys, D.; Heremans, R.; Perneel, C.; Acheroy, M. Fusion of PolSAR and PolInSAR data for land cover classification. Int. J. Appl. Earth Observ. Geoinf 2009, 11, 169–180. [Google Scholar]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens 1996, 34, 498–518. [Google Scholar]
- Krogager, E. New decomposition of the radar target scattering matrix. Electron. Lett 1990, 26, 1525–1527. [Google Scholar]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Rem. Sens 1998, 36, 963–973. [Google Scholar]
- Huynen, J.R. Phenomenological Theory of Radar Targets. PhD dissertation. University of Technology: Delft, The Netherlands, 1970. [Google Scholar]
- Holm, W.A.; Barnes, R.M. On radar polarization mixed target state decomposition techniques. Proc. of IEEE Radar Conference, Ann Arbor, MI, USA, 1988; pp. 249–254.
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens 1997, 35, 549–557. [Google Scholar]
- Lin, C.J.; Chung, I.F.; Chen, C.H. An entropy-based quantum neuro-fuzzy inference system for classification applications. Neurocomputing 2007, 70, 2502–2516. [Google Scholar]
- Kido, S.; Tamura, S. Computerized classification of interstitial lung abnormalities on chest radiographs with normalized radiographic index and normalized fractal dimension. Eur. J. Radiol 2001, 37, 184–189. [Google Scholar]
- Ranson, K.J.; Sun, G.Q. An evaluation of AIRSAR and SIR-C/X-SAR images for mapping northern forest attributes in Maine, USA. Remote Sens. Environ 1997, 59, 203–222. [Google Scholar]
- Avci, E.; Turkoglu, I.; Poyraz, M. Intelligent target recognition based on wavelet packet neural network. Expert Syst. Appl 2005, 29, 175–182. [Google Scholar]
- Acqua, F.D.; Gamba, P.; Trianni, G. Semi-automatic choice of scale-dependent features for satellite SAR image classification. Patt. Recogn. Lett 2006, 27, 244–251. [Google Scholar]
- Cooper, G.R.J.; Cowan, D.R. The use of textural analysis to locate features in geophysical data. Comput. Geosci 2005, 31, 882–890. [Google Scholar]
- Khan, K.U.; Yang, J. Polarimetric synthetic aperture radar image classification by a hybrid method. Tsinghua Sci. Technol 2007, 12, 97–104. [Google Scholar]
- Lee, J.J.; Kim, D.; Chang, S.K.; Nocete, C.F.M. An improved application technique of the adaptive probabilistic neural network for predicting concrete strength. Comput. Mater. Sci 2009, 44, 988–998. [Google Scholar]
- Mostafa, M.M. Modeling the competitive market efficiency of Egyptian companies: A probabilistic neural network analysis. Expert Syst. Appl 2009, 36, 8839–8848. [Google Scholar]
- Armand, P.; Benoist, J.; Bousquet, E.; Delage, L.; Olivier, S.; Reynaud, F. Optimization of a one dimensional hypertelescope for a direct imaging in astronomy. Eur. J. Oper. Res 2009, 195, 519–527. [Google Scholar]
- Luukka, P. Classification based on fuzzy robust PCA algorithms and similarity classifier. Expert Syst. Appl. 2009, 36, 7463–7468. [Google Scholar]
- Pottier, E.; Cloude, S.R. Application of the H/A/α polarimetric decomposition theorems for land classification. Proc. SPIE Conference on Wideband Interferometric Sensing and Imaging Polarimetry, San Diego, CA, USA, 1997; pp. 132–143.
- Tien, C.L.; Lyu, Y.R.; Jyu, S.S. Surface flatness of optical thin films evaluated by gray level co-occurrence matrix and entropy. Appl. Surf. Sci 2008, 254, 4762–4767. [Google Scholar]
- Chen, C.H.; Chu, C.T. High performance iris recognition based on 1-D circular feature extraction and PSO–PNN classifier. Expert Syst. Appl 2009, 36, 10351–10356. [Google Scholar]
- Luukka, P. Classification based on fuzzy robust PCA algorithms and similarity classifier. Expert Syst. Appl 2009, 36, 7463–7468. [Google Scholar]
- Gupta, K.K.; Gupta, R. Despeckle and geographical feature extraction in SAR images by wavelet transform. ISPRS J. Photogramm. Remote Sens 2007, 62, 473–484. [Google Scholar]
- Chen, K.S.; Huang, W.P.; Tsay, D.H.; Amar, F. Classification of multifrequency polarimetric SAR imagery using a dynamic learning neural network. IEEE Trans. Geosci. Remote Sens 1996, 34, 814–820. [Google Scholar]
Pauli Bases | Meaning |
---|---|
Sa | Single- or odd-bounce scattering |
Sb | Double- or even-bounce scattering |
Sc | Those scatterers which are able to return the orthogonal polarization to the one of the incident wave (forest canopy) |
Property | Description | Formula |
---|---|---|
Contrast | Intensity contrast between a pixel and its neighbor | |
Correlation | Correlation between a pixel and its neighbor (μ denotes the expected value, and σ the standard variance) | |
Energy | Energy of the whole image | |
Homogeneity | Closeness of the distribution of GLCM to the diagonal |
Dimensions | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Variance (%) | 37.97 | 50.81 | 60.21 | 68.78 | 77.28 | 82.75 | 86.27 | 89.30 | 92.27 |
Dimensions | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Variance (%) | 94.63 | 96.36 | 97.81 | 98.60 | 99.02 | 99.37 | 99.62 | 99.80 | 99.92 |
Training Area | Testing Area | ||||||
---|---|---|---|---|---|---|---|
Sea(T) | Urb(T) | Veg(T) | Sea(T) | Urb(T) | Veg(T) | ||
3-layer BPNN | Sea(O) | 7158 | 4 | 60 | 3600 | 42 | 5 |
33.1% | 0.0% | 0.3% | 33.3% | 0.4% | 0.0% | ||
Urb(O) | 0 | 6882 | 136 | 0 | 3429 | 355 | |
0% | 31.9% | 0.6% | 0.0% | 31.7% | 3.3% | ||
Veg(O) | 42 | 314 | 7004 | 0 | 129 | 3240 | |
0.2% | 1.4% | 32.4% | 0.0% | 1.2% | 30.0% | ||
Our Method | Sea(O) | 7150 | 0 | 76 | 3597 | 33 | 0 |
33.1% | 0.0% | 0.4% | 33.3% | 0.3% | 0.0% | ||
Urb(O) | 2 | 7074 | 74 | 0 | 3445 | 354 | |
0% | 32.8% | 0.3% | 0.0% | 31.9% | 3.3% | ||
Veg(O) | 48 | 126 | 7050 | 3 | 122 | 3246 | |
0.2% | 0.6% | 32.6% | 0.0% | 1.1% | 30.1% |
Training Area | Testing Area | |
---|---|---|
3-layer BPNN | 97.4% | 95.1% |
Our Method | 98.5% | 95.3% |
Dimensions | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Variance (%) | 26.31 | 42.98 | 52.38 | 60.50 | 67.28 | 73.27 | 78.74 | 82.61 | 86.25 |
Dimensions | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Variance (%) | 89.52 | 92.72 | 95.50 | 98.06 | 98.79 | 99.24 | 99.63 | 99.94 | 99.97 |
Site | Polarimetric feature set | Texture feature set | Combined feature set | |
---|---|---|---|---|
San Francisco (TR=33.3%) | Training Area | 97.1% | 59.9% | 98.5% |
Test Area | 87.4% | 45.9% | 95.3% | |
Flevoland (TR=7.69%) | Training Area | 92.2% | 48.0% | 93.7% |
Test Area | 72.2% | 24.1% | 86.2% |
Area Size | Computation Time | Overall Accuracy | |||
---|---|---|---|---|---|
Without RD | With RD | Ratio | Without RD | With RD | |
10 × 10 | 1.0818 | 0.0231 | 46.8 | 94.8% | 94.9% |
20 × 20 | 4.0803 | 0.0386 | 105.7 | 95.5% | 95.5% |
30 × 30 | 22.4270 | 0.0751 | 298.6 | 96.3% | 96.2% |
40 × 40 | 58.1409 | 0.1125 | 516.8 | 95.9% | 95.4% |
© 2009 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, Y.; Wu, L.; Neggaz, N.; Wang, S.; Wei, G. Remote-Sensing Image Classification Based on an Improved Probabilistic Neural Network. Sensors 2009, 9, 7516-7539. https://doi.org/10.3390/s90907516
Zhang Y, Wu L, Neggaz N, Wang S, Wei G. Remote-Sensing Image Classification Based on an Improved Probabilistic Neural Network. Sensors. 2009; 9(9):7516-7539. https://doi.org/10.3390/s90907516
Chicago/Turabian StyleZhang, Yudong, Lenan Wu, Nabil Neggaz, Shuihua Wang, and Geng Wei. 2009. "Remote-Sensing Image Classification Based on an Improved Probabilistic Neural Network" Sensors 9, no. 9: 7516-7539. https://doi.org/10.3390/s90907516
APA StyleZhang, Y., Wu, L., Neggaz, N., Wang, S., & Wei, G. (2009). Remote-Sensing Image Classification Based on an Improved Probabilistic Neural Network. Sensors, 9(9), 7516-7539. https://doi.org/10.3390/s90907516