Measurement of Trunk Movement during Sit-to-Stand Motion Using Laser Range Finders: A Preliminary Study
<p>Overview of the developed chair with embedded sensors. The chair comprises two laser range finders to measure the distance between the chair and body. Microcontrollers used to control these sensors are embedded in the backrest.</p> "> Figure 2
<p>Link model assumed in this study. The two-link model for calculating the trunk angle (<span class="html-italic">θ<sub>trunk</sub></span>) and thigh angle (<span class="html-italic">θ<sub>thigh</sub></span>) originates from the knee joint.</p> "> Figure 3
<p>Experimental conditions analyzed in this study. (<b>a</b>) Normal; (<b>b</b>) Increase in the trunk anterior tilt; (<b>c</b>) Decrease in the trunk anterior tilt; (<b>d</b>) Slow speed; (<b>e</b>) Fast speed; (<b>f</b>) Right-side weight shift; (<b>g</b>) Left-side weight shift.</p> "> Figure 4
<p>Typical time-series data of trunk flexion–extension angle obtained by our proposed system and optical motion capture (MoCap) system. Trunk flexion and extension excursions were calculated as the maximum displacement in the flexion and extension phase in each system.</p> "> Figure 5
<p>Scatter plots of angular excursion of (<b>a</b>) trunk flexion and (<b>b</b>) extension measured using the developed chair with embedded laser range finders and optical motion capture (MoCap) system. The chair with embedded laser range finders calculated trunk angles at two thigh-length settings, namely, 403 mm (Trunk_403) and 446 mm (Trunk_446). The correlation coefficients were calculated for each setting (<span class="html-italic">r_403</span> and <span class="html-italic">r_446</span>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chair with Embedded Sensors
2.1.1. Sensor Configuration
2.1.2. Calculation of Segment Angles
2.2. Experiment
2.2.1. Subjects
- age: 21 years old, height: 1.86 m, weight: 73.4 kg;
- age: 22 years old, height: 1.80 m, weight: 65.8 kg;
- age: 36 years old, height: 1.81 m, weight: 78.0 kg.
2.2.2. Data Collection
2.2.3. Data Analysis
3. Results
3.1. Waveform Similarity
3.2. Absolute Errors
3.3. Relationship of Joint Angular Excursions Calculated Using the Two Methods
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skelton, D.A.; Greig, C.A.; Davies, J.M.; Young, A. Strength, power and related functional ability of healthy people aged 65–89 years. Age Ageing 1994, 23, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Md, J.F.; Kiely, D.K.; Herman, S.; Leveille, S.G.; Mizer, K.; Frontera, W.R.; Fielding, R.A. The relationship between leg power and physical performance in mobility-limited older people. J. Am. Geriatr. Soc 2002, 50, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Schaubert, K.L.; Bohannon, R.W. Reliability and validity of three strength measures obtained from community-dwelling elderly persons. J. Strength Cond. Res. 2005, 19, 717. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, E.K.; Horvat, M.A.; Holtsberg, P.A.; Wisenbaker, J.M. Repeated chair stands as a measure of lower limb strength in sexagenarian women. J. Gerentol. A Biol. Sci. Med. Sci. 2004, 59, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Millor, N.; Lecumberri, P.; Gomez, M.; Martinez, A.; Martinikorena, J.; Rodriguez-Manas, L.; Garcia-Garcia, F.J.; Izquierdo, M. Gait velocity and chair sit-stand-sit performance improves current frailty-status identification. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2018–2025. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Mishra, R.; Sharafkhaneh, A.; Bryant, M.S.; Nguyen, C.; Torres, I.; Naik, A.D.; Najafi, B. Digital biomarker representing frailty phenotypes: The use of machine learning and sensor-based sit-to-stand test. Sensors 2021, 21, 3258. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.M.; Stevenson, P.J.; Charette, S.L.; Pyka, G.; Marcus, R. Effect of muscle strength and movement speed on the biomechanics of rising from a chair in healthy elderly and young women. Gait Posture 1998, 8, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Sharafkhaneh, A.; Bryant, M.S.; Nguyen, C.; Torres, I.; Najafi, B. Toward remote assessment of physical frailty using sensor-based sit-to-stand test. J. Surg. Res. 2021, 263, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Regterschot, G.R.; Folkersma, M.; Zhang, W.; Baldus, H.; Stevens, M.; Zijlstra, W. Sensitivity of sensor-based sit-to-stand peak power to the effects of training leg strength, leg power and balance in older adults. Gait Posture 2014, 39, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Anan, M.; Hattori, H.; Tanimoto, K.; Wakimoto, Y.; Ibara, T.; Kito, N.; Shinkoda, K. The coordination of joint movements during sit-to-stand motion in old adults: The uncontrolled manifold analysis. Phys. Ther. Res. 2017, 20, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Laković, N.; Brkić, M.; Batinić, B.; Bajić, J.; Rajs, V.; Kulundžić, N. Application of low-cost VL53L0X ToF sensor for robot environment detection. In Proceedings of the 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 20–22 March 2019. [Google Scholar] [CrossRef]
- Adachi, D.; Nishiguchi, S.; Fukutani, N.; Hotta, T.; Tashiro, Y.; Morino, S.; Shirooka, H.; Nozaki, Y.; Hirata, H.; Yamaguchi, M.; et al. Generating linear regression model to predict motor functions by use of laser range finder during TUG. J. Orthop. Sci. 2017, 22, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Iijima, H.; Eguchi, R.; Kuroiwa, T.; Sasaki, T.; Yokoyama, Y.; Koyama, T.; Nimura, A.; Kato, R.; Okawa, A.; et al. Gait analysis of patients with distal radius fracture by using a novel laser Timed Up-and-Go system. Gait Posture 2020, 80, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.A.; Weiner, D.K.; Schenkman, M.L.; Long, R.M.; Studenski, S.A. Chair rise strategies in the elderly. Clin. Biomech. 1994, 9, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Nozawa, R.; Yamamoto, S. The relationship of lower limb and trunk movements in sit-to-stand performed by the young and elderly. Rigakuryoho Kagaku 2012, 27, 31–35. [Google Scholar] [CrossRef]
- Mathiyakom, W.; McNitt-Gray, J.L.; Requejo, P.; Costa, K. Modifying center of mass trajectory during sit-to-stand tasks redistributes the mechanical demand across the lower extremity joints. Clin. Biomech. 2005, 20, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Hirai, T.; Uehara, M.; Miyagi, M.; Takahashi, S.; Nakashima, H. Current advances in spinal diseases of the elderly: Introduction to the special issue. J. Clin. Med. 2021, 10, 3298. [Google Scholar] [CrossRef] [PubMed]
Condition | Subject A | Subject B | Subject C |
---|---|---|---|
Normal | 0.968 | 0.950 | 0.892 |
Increase in the trunk anterior tilt | 0.961 | 0.902 | 0.902 |
Decrease in the trunk anterior tilt | 0.965 | 0.927 | 0.832 |
Slow speed | 0.967 | 0.848 | 0.863 |
Fast speed | 0.871 | 0.912 | 0.845 |
Right-side weight shift | 0.891 | 0.880 | 0.856 |
Left-side weight shift | 0.959 | 0.901 | 0.910 |
Condition | Setting * | Subject A | Subject B | Subject C | |||
---|---|---|---|---|---|---|---|
Flexion | Extension | Flexion | Extension | Flexion | Extension | ||
Normal | 403 | 0.951 | 0.667 | 0.963 | 0.484 | 0.975 | 0.358 |
446 | 0.979 | 0.713 | 0.943 | 0.357 | 0.961 | 0.320 | |
Increase in the trunk anterior tilt | 403 | 0.971 | 0.550 | 0.989 | 0.427 | 0.981 | 0.670 |
446 | 0.993 | 0.598 | 0.979 | 0.337 | 0.971 | 0.685 | |
Decrease in the trunk anterior tilt | 403 | 0.844 | 0.367 | 0.978 | 0.251 | 0.964 | 0.134 |
446 | 0.913 | 0.454 | 0.977 | 0.141 | 0.954 | 0.142 | |
Slow speed | 403 | 0.946 | 0.744 | 0.990 | 0.533 | 0.983 | 0.865 |
446 | 0.968 | 0.820 | 0.979 | 0.614 | 0.978 | 0.935 | |
Fast speed | 403 | 0.870 | 0.156 | 0.963 | 0.160 | 0.944 | 0.094 |
446 | 0.951 | 0.120 | 0.944 | 0.138 | 0.941 | 0.084 | |
Right-side weight shift | 403 | 0.987 | 0.899 | 0.981 | 0.560 | 0.980 | 0.989 |
446 | 0.987 | 0.887 | 0.963 | 0.656 | 0.971 | 0.965 | |
Left-side weight shift | 403 | 0.848 | 0.703 | 0.979 | 0.598 | 0.979 | 0.447 |
446 | 0.917 | 0.599 | 0.965 | 0.439 | 0.970 | 0.466 |
Condition | Setting | Subject A | Subject B | Subject C | |||
---|---|---|---|---|---|---|---|
Flexion | Extension | Flexion | Extension | Flexion | Extension | ||
Normal | 403 | 2.2 (6.3) | 23.2 (37.4) | 0.6 (3.6) | 51.8 (114.0) | 12.1 (23.0) | 31.3 (57.6) |
446 | 2.9 (7.1) | 40.6 (65.2) | 2.6 (6.8) | 85.5 (188.2) | 11.2 (21.1) | 52.8 (96.7) | |
Increase in the trunk anterior tilt | 403 | 6.3 (8.7) | 21.3 (31.1) | 16.8 (25.7) | 37.3 (53.3) | 19.3 (32.0) | 31.1 (52.6) |
446 | 7.4 (10.2) | 40.2 (58.7) | 17.1 (26.2) | 67.7 (96.7) | 18.7 (30.9) | 63.6 (108.4) | |
Decrease in the trunk anterior tilt | 403 | 10.6 (33.5) | 38.4 (101.3) | 7.3 (25.1) | 63.6 (194.9) | 5.1 (20.3) | 49.3 (204.9) |
446 | 13.1 (41.4) | 55.3 (145.9) | 9.8 (33.8) | 97.6 (298.7) | 8.0 (31.7) | 82.8 (313.2) | |
Slow speed | 403 | 2.9 (6.6) | 20.8 (19.3) | 6.9 (12.3) | 34.6 (58.8) | 15.0 (29.1) | 10.8 (51.9) |
446 | 3.7 (7.1) | 32.2 (26.4) | 7.1 (12.5) | 59.9 (101.7) | 14.1 (28.4) | 23.6 (86.9) | |
Fast speed | 403 | 1.4 (4.8) | 39.2 (102.7) | 0.8 (8.4) | 61.5 (148.3) | 8.8 (30.4) | 49.3 (153.0) |
446 | 2.1 (6.3) | 75.8 (198.4) | 1.1 (10.4) | 91.4 (220.0) | 5.5 (18.8) | 82.9 (256.7) | |
Right-side weight shift | 403 | 17.9 (25.1) | 13.1 (19.3) | 1.8 (4.5) | 36.1 (68.1) | 12.1 (20.8) | 11.9 (61.4) |
446 | 16.4 (22.8) | 13.7 (26.4) | 0.2 (7.5) | 57.3 (133.2) | 8.4 (20.1) | 6.7 (65.0) | |
Left-side weight shift | 403 | 9.1 (14.0) | 37.7 (57.7) | 1.6 (4.9) | 41.0 (84.8) | 14.6 (25.6) | 54.1 (97.8) |
446 | 9.0 (14.0) | 68.8 (105.2) | 2.9 (6.5) | 76.5 (158.0) | 13.6 (23.7) | 82.8 (149.1) |
Setting | Subject A | Subject B | Subject C | |||
---|---|---|---|---|---|---|
Flexion | Extension | Flexion | Extension | Flexion | Extension | |
Optical | 58.6 (14.5) | 58.4 (13.4) | 46.8 (11.5) | 50.1 (11.6) | 47.9 (14.3) | 49.8 (12.9) |
403 | 54.8 (8.7) | 82.4 (15.4) | 44.3 (5.9) | 96.7 (12.8) | 36.9 (8.8) | 82.1 (27.5) |
446 | 45.7 (5.3) | 101.2 (27.3) | 45.7 (5.3) | 126.7 (23.5) | 38.8 (8.7) | 107.7 (36.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toda, H.; Omori, K.; Fukui, K.; Chin, T. Measurement of Trunk Movement during Sit-to-Stand Motion Using Laser Range Finders: A Preliminary Study. Sensors 2023, 23, 2022. https://doi.org/10.3390/s23042022
Toda H, Omori K, Fukui K, Chin T. Measurement of Trunk Movement during Sit-to-Stand Motion Using Laser Range Finders: A Preliminary Study. Sensors. 2023; 23(4):2022. https://doi.org/10.3390/s23042022
Chicago/Turabian StyleToda, Haruki, Kiyohiro Omori, Katsuya Fukui, and Takaaki Chin. 2023. "Measurement of Trunk Movement during Sit-to-Stand Motion Using Laser Range Finders: A Preliminary Study" Sensors 23, no. 4: 2022. https://doi.org/10.3390/s23042022