Photovoltaic Panels Classification Using Isolated and Transfer Learned Deep Neural Models Using Infrared Thermographic Images
<p>Proposed approach.</p> "> Figure 2
<p>Solar panels classification based on health.</p> "> Figure 3
<p>Solar panels classification based on defects.</p> "> Figure 4
<p>Deep neural network generic architecture for PV classification.</p> "> Figure 5
<p>Training loss of different-layered ICNMs.</p> "> Figure 6
<p>Training loss of pre-trained networks.</p> "> Figure 7
<p>Training loss of models.</p> "> Figure 8
<p>Training loss of models for augmented datasets.</p> ">
Abstract
:1. Introduction
1.1. Losses in PV System
1.2. Health Monitoring Approaches of PV System
1.3. Non-Invasive Images-Based Classification of PV Panels’ Health and Defects: Literature Review
2. Research Approach
2.1. PV System
2.2. Pre-Processing
2.3. Isolated and Trained Transfer Learning-Model-Based Classifiers
2.4. Training and Testing Dataset
3. Results
3.1. Isolated Neural Network and Transfer Learned Pre-Trained Networks for PV Classification Based on Health
3.2. Transfer Learning on an Isolated Model for Defects Classification
3.3. Transfer Learning on Augmented Dataset
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, M.U.; Khan, H.F.; Masud, M.; Kallu, K.D.; Zafar, A. A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography. Sol. Energy 2020, 208, 643–651. [Google Scholar] [CrossRef]
- Ahmed, W.; Sheikh, J.A.; Ahmad, S.; Farjana, S.H.; Mahmud, M.P. Impact of PV system orientation angle accuracy on greenhouse gases mitigation. Case Stud. Therm. Eng. 2021, 23, 100815. [Google Scholar] [CrossRef]
- Ahmed, W.; Sheikh, J.A.; Kouzani, A.Z.; Mahmud, M.A. The Role of Single End-Users and Producers on GHG Mitigation in Pakistan—A Case Study. Sustainability 2020, 12, 8351. [Google Scholar] [CrossRef]
- Pakistan Energy Resources. Available online: http://ntdc.gov.pk/energy (accessed on 12 April 2021).
- Goal 13: Take Urgent Action to Combat Climate Change and Its Impacts. Available online: https://www.un.org/sustainabledevelopment/climate-change/ (accessed on 2 April 2021).
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: Synthesis Report. 2007. Available online: http://www.ipcc.ch/ (accessed on 2 April 2021).
- Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain. Energy Rev. 2018, 90, 275–291. [Google Scholar] [CrossRef]
- Balasubramani, G.; Thangavelu, V.; Chinnusamy, M.; Subramaniam, U.; Padmanaban, S.; Mihet-Popa, L. Infrared Thermography Based Defects Testing of Solar Photovoltaic Panel with Fuzzy Rule-Based Evaluation. Energies 2020, 13, 1343. [Google Scholar] [CrossRef] [Green Version]
- BLD 290-Watt Solar Panels. Available online: https://www.enfsolar.com/pv/panel-datasheet/crystalline/23907 (accessed on 18 December 2020).
- Dimitrievska, V.; Pittino, F.; Muehleisen, W.; Diewald, N.; Hilweg, M.; Montvay, A.; Hirschl, C. Statistical Methods for Degradation Estimation and Anomaly Detection in Photovoltaic Plants. Sensors 2021, 21, 3733. [Google Scholar] [CrossRef]
- Dunderdale, C.; Brettenny, W.; Clohessy, C.; van Dyk, E.E. Photovoltaic defect classification through thermal infrared imaging using a machine learning approach. Prog. Photovolt. Res. Appl. 2020, 28, 177–188. [Google Scholar] [CrossRef]
- Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Ahmad, A. Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning. Sol. Energy 2020, 198, 175–186. [Google Scholar] [CrossRef]
- Cipriani, G.; D’Amico, A.; Guarino, S.; Manno, D.; Traverso, M.; Di Dio, V. Convolutional Neural Network for Dust and Hotspot Classification in PV Modules. Energies 2020, 13, 6357. [Google Scholar] [CrossRef]
- Niazi, K.; Khan, H.A.; Amir, F. Hot-spot reduction and shade loss minimization in crystalline-silicon solar panels. J. Renew. Sustain. Energy 2018, 10, 033506. [Google Scholar] [CrossRef]
- Lazzaretti, A.E.; Costa, C.H.D.; Rodrigues, M.P.; Yamada, G.D.; Lexinoski, G.; Moritz, G.L.; Oroski, E.; Goes, R.E.D.; Linhares, R.R.; Stadzisz, P.C.; et al. A monitoring system for online fault detection and classification in photovoltaic plants. Sensors 2020, 20, 4688. [Google Scholar] [CrossRef]
- Aziz, F.; Haq, A.U.; Ahmad, S.; Mahmoud, Y.; Jalal, M.; Ali, U. A novel convolutional neural network-based approach for fault classification in photovoltaic arrays. IEEE Access 2020, 8, 41889–41904. [Google Scholar] [CrossRef]
- Ul-Haq, A.; Sindi, H.F.; Gul, S.; Jalal, M. Modeling and Fault Categorization in Thin-Film and Crystalline PV Arrays Through Multilayer Neural Network Algorithm. IEEE Access 2020, 8, 102235–102255. [Google Scholar] [CrossRef]
- Basnet, B.; Chun, H.; Bang, J. An Intelligent Fault Detection Model for Fault Detection in Photovoltaic Systems. J. Sens. 2020, 2020, 6960328. [Google Scholar] [CrossRef]
- Gallardo-Saavedra, S.; Hernández-Callejo, L.; Alonso-García, M.D.C.; Muñoz-Cruzado-Alba, J.; Ballestín-Fuertes, J. Infrared Thermography for the Detection and Characterization of Photovoltaic Defects: Comparison between Illumination and Dark Conditions. Sensors 2020, 20, 4395. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V.; Mather, P.; Sibley, M. Novel hot spot mitigation technique to enhance photovoltaic solar panels output power performance. Sol. Energy Mater. Sol. Cells 2018, 179, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, W.; Sheikh, J.A.; Farjana, S.H.; Mahmud, M.A.P. Defects Impact on PV System GHG Mitigation Potential and Climate Change. Sustainability 2021, 13, 7793. [Google Scholar] [CrossRef]
- Ahsan, S.; Niazi, K.A.K.; Khan, H.A.; Yang, Y. Hotspots and performance evaluation of crystalline-silicon and thin-film photovoltaic modules. Microelectron. Reliab. 2018, 88, 1014–1018. [Google Scholar] [CrossRef]
- Tang, W.; Yang, Q.; Xiong, K.; Yan, W. Deep learning based automatic defect identification of photovoltaic module using electroluminescence images. Sol. Energy 2020, 201, 453–460. [Google Scholar] [CrossRef]
- Roeder, B.; Schlothauer, J.; Koehl, M. Fluorescence imaging for analysis of the degradation of PV-modules. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011; pp. 003606–003608. [Google Scholar]
- Trupke, T.; Mitchell, B.; Weber, J.W.; McMillan, W.; Bardos, R.A.; Kroeze, R. Photoluminescence imaging for photovoltaic applications. Energy Procedia 2012, 15, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Niazi, K.; Akhtar, W.; Khan, H.A.; Sohaib, S.; Nasir, A.K. Binary classification of defective solar PV modules using thermography. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 753–757. [Google Scholar]
- Niazi, K.A.K.; Akhtar, W.; Khan, H.A.; Yang, Y.; Athar, S. Hotspot diagnosis for solar photovoltaic modules using a Naive Bayes classifier. Sol. Energy 2019, 190, 34–43. [Google Scholar] [CrossRef]
- Kurukuru, V.B.; Haque, A.; Khan, M.A.; Tripathy, A.K. Fault classification for photovoltaic modules using thermography and machine learning techniques. In Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 3–4 April 2019; pp. 1–6. [Google Scholar]
- Bommes, L.; Pickel, T.; Buerhop-Lutz, C.; Hauch, J.; Brabec, C.; Peters, I.M. Computer vision tool for detection, mapping, and fault classification of photovoltaics modules in aerial IR videos. Prog. Photovolt. Res. Appl. 2021, 1–16. [Google Scholar] [CrossRef]
- RETScreen International, RETScreen Software Online User Manual, CANMET Energy Technology Centre, Varennes, Quebec, Canada. 2005. Available online: http://www.nrcan.gc.ca/energy/software-tools/7465 (accessed on 2 April 2021).
- Haynes, W.M. (Ed.) CRC Handbook of Chemistry and Physics; CRC press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Review of Failures of Photovoltaic Modules. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_T1301_2014_Review_of_Failures_of_Photovoltaic_Modules_Final.pdf (accessed on 15 May 2021).
- Booker, L.B.; Goldberg, D.E.; Holland, J.H. Classifier systems and genetic algorithms. Artif. Intell. 1989, 40, 235–282. [Google Scholar] [CrossRef]
- Brownlee, J. Deep Learning for Computer Vision: Image Classification, Object Detection, and Face Recognition in Python; Machine Learning Mastery: San Juan, Puerto Rico, 2019. [Google Scholar]
- Du, B.; He, Y.; He, Y.; Duan, J.; Zhang, Y. Intelligent classification of silicon photovoltaic cell defects based on eddy current thermography and convolution neural network. IEEE Trans. Ind. Inform. 2019, 16, 6242–6251. [Google Scholar] [CrossRef]
- Nakamichi, K.; Lu, H.; Kim, H.; Yoneda, K.; Tanaka, F. Classification of circulating tumor cells in fluorescence microscopy images based on SqueezeNet. In Proceedings of the 2019 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea, 15–18 October 2019; pp. 1042–1045. [Google Scholar]
- Zhou, Z.; Zhang, B.; Yu, X. Infrared Handprint Classification Using Deep Convolution Neural Network. Neural Process. Lett. 2021, 53, 1065–1079. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [Google Scholar] [CrossRef]
- Malik, H.; Fatema, N.; Iqbal, A. Intelligent Data-Analytics for Condition Monitoring: Smart Grid Applications; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
Parameter | Values |
---|---|
Geographical coordinates | 31.5 N, 74.4 E |
Air temperature | 24.4 °C |
Relative humidity | 61.6% |
Precipitation | 551.78 mm |
Daily solar radiation—horizontal | 4.68 kWh/m2/d |
Wind speed at 10 m | 2.1 m/s |
Parameter | Values |
---|---|
PV system | 42.24 kW |
PV strings | 8 |
PV modules per string | 22 |
PV panel rating | 240 W |
Thermal camera | FLIR VUE-Pro 640 |
Thermal camera position | Handheld, horizontal aligned |
Ambient temperature | 32–40 °C |
Wind speed | 6.9 m/s |
Irradiance level | 700 W/m2 |
Thermal image- bit depth | 8-bit |
Spatial resolution | 640 × 512/pixel |
PV System Health | Images Set |
---|---|
Healthy | 32.38% |
Hotspot | 31.43% |
Faulty | 36.19% |
PV System Health | Images Set |
---|---|
Bird Drop | 5.16% |
Single | 36.62% |
Patchwork | 5.16% |
HA String | 12.68% |
Block | 40.38% |
Solver | SGDM |
---|---|
Initial learn rate | 0.001 |
Epochs | 60 |
Momentum | 0.9 |
Activation function | ReLU |
Learn rate drop factor | 0.0 |
Learn rate drop period | 0.0 |
Layers | Training Loss | Training Accuracy | Validation Loss | Validation Accuracy | Execution Time |
---|---|---|---|---|---|
6 | 0 | 100% | 0 | 96% | 6 min 47 s |
7 | 0 | 100% | 0.2 | 96% | 8 min 35 s |
8 | 0.00033 | 100% | 1.13 | 84% | 17 min 18 s |
9 | 0.18 | 97.66% | 0.46 | 88% | 35 min 34 s |
Model | Training Loss | Training Accuracy | Validation Loss | Validation Accuracy | Execution Time |
---|---|---|---|---|---|
SqueezeNet | 0.043 | 99.22% | 0.037 | 100% | 12 min 45 s |
GoogleNet | 0.003 | 100% | 0.06 | 98.41% | 28 min 28 s |
ShuffleNet | 0.003 | 100% | 0.08 | 100% | 23 min 23 s |
Class | TPR | FNR | PPV | FDR | Training Loss | Training Accuracy | Validation Loss | Validation Accuracy | Testing Accuracy | Execution Time |
---|---|---|---|---|---|---|---|---|---|---|
Bird drop | 100 | 0 | 100 | 0 | 0 | 100% | 1.97 × 10−5 | 100% | 97.62% | 8 min 10 s |
Patchwork | 50 | 50 | 100 | 0 | ||||||
Single | 100 | 0 | 100 | 0 | ||||||
String | 100 | 0 | 100 | 0 | ||||||
Block | 100 | 0 | 94.4 | 5.6 |
Network | Class | TPR | FNR | PPV | FDR | Training Loss | Training Accuracy | Validation Loss | Validation Accuracy | Testing Accuracy | Execution Time |
---|---|---|---|---|---|---|---|---|---|---|---|
Squeeze Net | Bird drop | 100 | 0 | 100 | 0 | 0.009 | 100% | 0.24 | 94.12% | 100% | 12 min |
Patchwork | 100 | 0 | 100 | 0 | |||||||
Single | 100 | 0 | 100 | 0 | |||||||
String | 100 | 0 | 100 | 0 | |||||||
Block | 100 | 0 | 100 | 0 | |||||||
Google Net | Bird drop | 100 | 0 | 100 | 0 | 0.013 | 100% | 0.07 | 97.62% | 97.62% | 28 min 21 s |
Patchwork | 50 | 50 | 100 | 0 | |||||||
Single | 100 | 0 | 94.1 | 5.9 | |||||||
String | 100 | 0 | 100 | 0 | |||||||
Block | 100 | 0 | 100 | 0 | |||||||
Shuffle Net | Bird drop | 100 | 0 | 100 | 0 | 0.003 | 100% | 0.2 | 94.12% | 97.62% | 21 min 38 s |
Patchwork | 100 | 0 | 100 | 0 | |||||||
Single | 100 | 0 | 94.1 | 5.9 | |||||||
String | 80 | 20 | 100 | 0 | |||||||
Block | 100 | 0 | 100 | 0 |
Network | Class | TPR | FNR | PPV | FDR | Training Loss | Training Accuracy | Validation Loss | Validation Accuracy | Execution Time |
---|---|---|---|---|---|---|---|---|---|---|
Seven-layered transfer learned model | Bird drop | 100 | 0 | 100 | 0 | 7.02 × 10−5 | 100% | 1.06 | 93.3% | 11 min 1 s |
Patchwork | 100 | 0 | 91.7 | 8.3 | ||||||
Single | 100 | 0 | 91.7 | 8.3 | ||||||
String | 90.9 | 9.1 | 100 | 0 | ||||||
Block | 90.9 | 9.1 | 100 | 0 | ||||||
GoogleNet | Bird drop | 90.9 | 9.1 | 100 | 0 | 0.017 | 99.22% | 0.43 | 92.7% | 40 min 20 s |
Patchwork | 100 | 0 | 100 | 0 | ||||||
Single | 100 | 0 | 84.6 | 15.4 | ||||||
String | 100 | 0 | 100 | 0 | ||||||
Block | 90.9 | 9.1 | 100 | 0 | ||||||
ShuffleNet | Bird drop | 100 | 0 | 100 | 0 | 0.0028 | 100% | 0.27 | 91.1% | 31 min 19 s |
Patchwork | 100 | 0 | 100 | 0 | ||||||
Single | 100 | 0 | 91.7 | 8.3 | ||||||
String | 100 | 0 | 100 | 0 | ||||||
Block | 90.9 | 9.1 | 100 | 0 | ||||||
Squeeze Net | Bird drop | 100 | 0 | 100 | 0 | 0.00085 | 100% | 1.17 | 89.9% | 17 min 56 s |
Patchwork | 100 | 0 | 100 | 0 | ||||||
Single | 100 | 0 | 73.3 | 26.7 | ||||||
String | 90.9 | 9.1 | 100 | 0 | ||||||
Block | 72.7 | 27.3 | 100 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, W.; Hanif, A.; Kallu, K.D.; Kouzani, A.Z.; Ali, M.U.; Zafar, A. Photovoltaic Panels Classification Using Isolated and Transfer Learned Deep Neural Models Using Infrared Thermographic Images. Sensors 2021, 21, 5668. https://doi.org/10.3390/s21165668
Ahmed W, Hanif A, Kallu KD, Kouzani AZ, Ali MU, Zafar A. Photovoltaic Panels Classification Using Isolated and Transfer Learned Deep Neural Models Using Infrared Thermographic Images. Sensors. 2021; 21(16):5668. https://doi.org/10.3390/s21165668
Chicago/Turabian StyleAhmed, Waqas, Aamir Hanif, Karam Dad Kallu, Abbas Z. Kouzani, Muhammad Umair Ali, and Amad Zafar. 2021. "Photovoltaic Panels Classification Using Isolated and Transfer Learned Deep Neural Models Using Infrared Thermographic Images" Sensors 21, no. 16: 5668. https://doi.org/10.3390/s21165668
APA StyleAhmed, W., Hanif, A., Kallu, K. D., Kouzani, A. Z., Ali, M. U., & Zafar, A. (2021). Photovoltaic Panels Classification Using Isolated and Transfer Learned Deep Neural Models Using Infrared Thermographic Images. Sensors, 21(16), 5668. https://doi.org/10.3390/s21165668