OCT-Based Periodontal Inspection Framework
<p>The (<b>a</b>) is the top-down ray based interference accumulation for various frequencies, and the (<b>b</b>) is the cross-sectional interference for the slice of the scanned volume marked with red. We can determine the alveolar point for each slice marked in cyan from each cross-sectional map, but it is hard to locate the gumline from the same view. However, we find that we can identify the gumline marked in yellow from the amplitude projection.</p> "> Figure 2
<p>After applying the OCT scanner and signal processing [<a href="#B24-sensors-19-05496" class="html-bibr">24</a>], we can gain 3D cross-sectional volumetric interference data. Our system first applies optical rectification and intensity quantization to process the volumetric data. Then, we compute the shooting amplitude projection and apply the OCT net to locate the gumline. Our system uses 2.5D Snake segmentation to locate the Region Of Interest (ROI) of each slice, quantizes it based on the properties of its ROI, and detects the alveolar line using our OCT net. Finally, we analyze the gumline and alveolar line for visualization and diagnosis.</p> "> Figure 3
<p>This shows the boundary of gingiva and teeth, i.e., the gumline, identified by canny [<a href="#B42-sensors-19-05496" class="html-bibr">42</a>], LevelSet [<a href="#B43-sensors-19-05496" class="html-bibr">43</a>], and Snake [<a href="#B40-sensors-19-05496" class="html-bibr">40</a>].</p> "> Figure 4
<p>This shows the volumetric segmentation results. From left to right are the inputs, ground truths (marked manually), and the results of SegNet [<a href="#B38-sensors-19-05496" class="html-bibr">38</a>], ResNet [<a href="#B37-sensors-19-05496" class="html-bibr">37</a>], ours with a kernel size of give, and ours with a kernel size of seven. From top to bottom are the central slices from Validating Data 7 and 8.</p> "> Figure 5
<p>From left to right are manually labeling (red), traditional Snake [<a href="#B40-sensors-19-05496" class="html-bibr">40</a>] (yellow), ours (blue), LevelSet [<a href="#B43-sensors-19-05496" class="html-bibr">43</a>] (green), and GrabCut [<a href="#B41-sensors-19-05496" class="html-bibr">41</a>] (pink).</p> "> Figure 6
<p>This shows the loss curve of the learning process for our OCT image network while using the combination of two learning rates, <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>, and three kernel sizes, 5, 7, and 9.</p> "> Figure 7
<p>This shows the adapted structures of SegNet [<a href="#B38-sensors-19-05496" class="html-bibr">38</a>] and ResNet [<a href="#B37-sensors-19-05496" class="html-bibr">37</a>] in this study.</p> "> Figure 8
<p>The left shows the gumline in solid lines and the alveolar line in dotted lines of Data 7 (the top) and 8 (the bottom) detected by an analyst in red, SegNet [<a href="#B38-sensors-19-05496" class="html-bibr">38</a>] in yellow, ResNet [<a href="#B37-sensors-19-05496" class="html-bibr">37</a>] in green, and ours in blue. The middle and right show the deviation analysis against the manually labeled ones for the gumline and the alveolar line, respectively.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Swept Source Optical Coherent Tomography
4. Overview
5. Algorithmic Details
5.1. Optical Rectification
5.2. Locate Effective Regions with 2.5D Snake
5.3. Inference Intensity Calibration and Quantization
5.4. Top Down Gingival Boundary Identification
Thinning for the Gingival Boundary
5.5. Volumetric Alveolar Bone Boundary Detection
6. Results
6.1. Periodontal Dataset
6.2. Ablation Study in Locating Regions of Interest
6.3. Ablation Study in Intensity Quantization
6.4. Periodontal Inspection
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
OCT | Optical Coherence Tomography |
GPU | Graphics Processing Unit |
4PCS | Super Four Point Congruent Set |
FFT | Fast Fourier Transform |
CT | Computed Tomography |
MRI | Magnetic Resonance Imaging |
SSOCT | Swept Source Optical Coherent Tomography |
AFG | Arbitrary Function Generator |
ADC | Analog-to-Digital Converter |
TPS | Thin-Plate Spline |
RANSAC | RANdom SAmple Consensus |
DT | Transfer a slice of scanning data (DT) |
Re | optical Rectification (Re) |
BD | Boundary Detection |
References
- Brown, J.; Löe, H. Prevalence, extent, severity and progression of periodontal disease. Periodontology 2000 1993, 2, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Goodson, J.; Tanner, A.; Haffajee, A.; Sornberger, G.; Socransky, S. Patterns of progression and regression of advanced destructive periodontal disease. J. Clin. Periodontol. 1982, 9, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Cercek, J.; Kiger, R.; Garrett, S.; Egelberg, J. Relative effects of plaque control and instrumentation on the clinical parameters of human periodontal disease. J. Clin. Periodontol. 1983, 10, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Aeppli, D.; Boen, J.; Bandt, C. Measuring and interpreting increases in probing depth and attachment loss. J. Periodontol. 1985, 56, 262–264. [Google Scholar] [CrossRef]
- Xiang, X.; Sowa, M.; Iacopino, A.; Maev, R.; Hewko, M.; Man, A.; Liu, K.Z. An update on novel non-invasive approaches for periodontal diagnosis. J. Periodontol. 2010, 81, 186–198. [Google Scholar] [CrossRef] [Green Version]
- Ortman, L.; McHenry, K.; Hausmann, E. Relationship between alveolar bone measured by 125I absorptiometry with analysis of standardized radiographs: 2. Bjorn technique. J. Periodontol. 1982, 53, 311–314. [Google Scholar] [CrossRef]
- Jeffcoat, M. Assessment of periodontal disease progression: Application of new technology to conventional tools. Periodontal Case Rep. Publ. Northeast. Soc. Periodontists 1989, 11, 8. [Google Scholar]
- Jeffcoat, M.; Page, R.; Reddy, M.; Wannawisute, A.; Waite, P.; Palcanis, K.; Cogen, R.; Williams, R.; Basch, C. Use of digital radiography to demonstrate the potential of naproxen as an adjunct in the treatment of rapidly progressive periodontitis. J. Periodontal Res. 1991, 26, 415–421. [Google Scholar] [CrossRef]
- Colston, B.; Sathyam, U.; Dasilva, L.; Everett, M.J.; Stroeve, P.; Otis, L. Dental OCT. Opt. Express. 1998, 3, 230–238. [Google Scholar] [CrossRef]
- Baumgartner, A.; Dichtl, S.; Hitzenberger, C.; Sattmann, H.; Robl, B.; Moritz, A.; Fercher, A.; Sperr, W. Polarization—Sensitive optical coherence tomography of dental structures. Caries Res. 2000, 34, 59–69. [Google Scholar] [CrossRef]
- Colston, B.; Everett, M.; Silva, L.; Otis, L.; Nathel, H. Optical Coherence Tomography for Diagnosing Periodontal Disease. Proc. SPIE 1997, 2973, 216–220. [Google Scholar]
- Baek, J.H.; Na, J.; Lee, B.H.; Choi, E.; Son, W.S. Optical approach to the periodontal ligament under orthodontic tooth movement: A preliminary study with optical coherence tomography. Am. J. Orthod. Dentofacial Orthop. 2009, 135, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, P.; Holtzman, J.; Epstein J, A. Optical diagnostics in the oral cavity: An overview. Oral Dis. 2010, 16, 717–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mota, C.C.; Fernandes, L.O.; Cimões, R.; Gomes, A.S. Non-Invasive Periodontal Probing Through Fourier-Domain Optical Coherence Tomography. J. Periodontol. 2015, 86, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.O.; Mota, C.C.; de Melo, L.S.A.; da Costa Soares, M.U.S.; da Silva Feitosa, D.; Gomes, A.S.L. In vivo assessment of periodontal structures and measurement of gingival sulcus with Optical Coherence Tomography: A pilot study. J. Biophotonics 2017, 10, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.O.; Mota, C.C.; Oliveira, H.O.; Neves, J.K.; Santiago, L.M.; Gomes, A.L. Optical coherence tomography follow-up of patients treated from periodontal disease. J. Biophotonics 2019, 12, e201800209. [Google Scholar] [CrossRef]
- Teles, R.; Haffajee, A.; Socransky, S. Microbiological goals of periodontal therapy. Periodontology 2000 2006, 42, 180–218. [Google Scholar] [CrossRef]
- Greenstein, G. Microbiologic assessments to enhance periodontal diagnosis. J. Periodontol. 1988, 59, 508–515. [Google Scholar] [CrossRef]
- Lamster, I.; Celenti, R.; Jans, H.; Fine, J.; Grbic, J. Current status of tests for periodontal disease. Adv. Dent. Res. 1993, 7, 182–190. [Google Scholar] [CrossRef]
- Henegariu, O.; Heerema, N.; Dlouhy, S.; Vance, G.; Vogt, P. Multiplex PCR: Critical parameters and step-by-step protocol. Biotechniques 1997, 23, 504–511. [Google Scholar] [CrossRef]
- Hodge, P.; Michalowicz, B. Genetic predisposition to periodontitis in children and young adults. Periodontology 2000 2001, 26, 113–134. [Google Scholar] [CrossRef] [PubMed]
- Yoshie, H.; Kobayashi, T.; Tai, H.; Galicia, J. The role of genetic polymorphisms in periodontitis. Periodontology 2000 2007, 43, 102–132. [Google Scholar] [CrossRef] [PubMed]
- Huynh-Ba, G.; Lang, N.; Tonetti, M.; Salvi, G. The association of the composite IL-1 genotype with periodontitis progression and/or treatment outcomes: A systematic review. J. Clin. Periodontol. 2007, 34, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.C.; Lin, J.Y.; Yao, C.Y.; Lyu, D.Y.; Lee, S.Y.; Chen, K.W.; Chen, I.Y. Interactive OCT-Based Tooth Scan and Reconstruction. Sensors 2019, 19, 4234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, S.; Pinto, A.; Alves, V.; Silva, C. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med Imaging 2016, 35, 1240–1251. [Google Scholar] [CrossRef]
- Tustison, N.; Avants, B.; Cook, P.; Zheng, Y.; Egan, A.; Yushkevich, P.; Gee, J. N4ITK: Improved N3 bias correction. IEEE Trans. Med Imaging 2010, 29, 1310. [Google Scholar] [CrossRef] [Green Version]
- Poudel, R.; Lamata, P.; Montana, G. Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In Reconstruction, Segmentation, and Analysis of Medical Images; Springer: Cham, Switzerland, 2016; pp. 83–94. [Google Scholar]
- Suzuki, K.; Armato, S., III; Li, F.; Sone, S.; Doi, K. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med. Phys. 2003, 30, 1602–1617. [Google Scholar] [CrossRef]
- Van Ginneken, B.; Setio, A.; Jacobs, C.; Ciompi, F. Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York, NY, USA, 16–19 April 2015; pp. 286–289. [Google Scholar]
- Huang, D.; Swanson, E.; Lin, C.; Schuman, J.; Stinson, W.; Chang, W.; Hee, M.; Flotte, T.; Gregory, K.; Puliafito, C. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, J. Optical coherence tomography (OCT): A review. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 1205–1215. [Google Scholar] [CrossRef] [Green Version]
- Wollstein, G.; Schuman, J.; Price, L.; Aydin, A.; Beaton, S.; Stark, P.; Fujimoto, J.; Ishikawa, H. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am. J. Ophthalmol. 2004, 138, 218–225. [Google Scholar] [CrossRef]
- Avanaki, M.; Laissue, P.; Podoleanu, A.; Hojjat, A. Denoising based on noise parameter estimation in speckled OCT images using neural network. In Proceedings of the 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics, Canterbury, UK, 6–12 September 2008; Volume 7139, p. 71390E. [Google Scholar]
- Röhlig, M.; Rosenthal, P.; Schmidt, C.; Schumann, H.; Stachs, O. Visual Analysis of Optical Coherence Tomography Data in Ophthalmology. In Proceedings of the EuroVA@ EuroVis, Barcelona, Spain, 12–13 June 2017; pp. 37–41. [Google Scholar]
- Potsaid, B.; Baumann, B.; Huang, D.; Barry, S.; Cable, A.E.; Schuman, J.S.; Duker, J.S.; Fujimoto, J.G. Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express 2010, 18, 20029–20048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Ji, L.; Wang, L.; Xue, P. How to optimize OCT image. Opt. Express 2001, 9, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1988, 1, 321–331. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Tang, C.K.; Shum, H.Y. Lazy snapping. Acm Trans. Graph. 2004, 23, 303–308. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. In Readings in Computer Vision; Elsevier: Amsterdam, The Netherlands, 1987; pp. 184–203. [Google Scholar]
- Vese, L.; Chan, T. A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 2002, 50, 271–293. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; pp. 1–13. [Google Scholar]
- Zhang, T.; Suen, C. A Fast Parallel Algorithm for Thinning Digital Patterns. Commun. ACM 1984, 27, 236–239. [Google Scholar] [CrossRef]
- Friedman, M.; Abraham, K. Introduction to Pattern Recognition: Statistical, Structural, Neural, and Fuzzy Logic Approaches, 2nd ed.; World Scientific: London, UK, 1999. [Google Scholar]
ROI | Quantization | |||||||
---|---|---|---|---|---|---|---|---|
2D Snake | 2.5D Snake | LevelSet | GrabCut | TDL | MD | IE | ME | |
Data 1 | 0.492 | 0.703 | 0.669 | 0.564 | 4.914 | 5.887 | 5.895 | 18.36 |
Data 3 | 0.505 | 0.605 | 0.356 | 0.574 | 14.86 | 14.02 | 13.76 | 12.90 |
Data 7 | 0.560 | 0.760 | 0.519 | 0.656 | 10.06 | 13.41 | 13.19 | 15.65 |
Data 8 | 0.393 | 0.489 | 0.546 | 0.353 | 15.24 | 18.75 | 19.10 | 19.15 |
SegNet | ResNet | Ours-7 | Ours-5 | |||||
---|---|---|---|---|---|---|---|---|
2D | 3D | 2D | 3D | 2D | 3D | 2D | 3D | |
Data 1 | 0.960 | 0.489 | 0.971 | 0.743 | - | 0.729 | 0.977 | 0.770 |
Data 3 | 0.944 | 0.582 | 0.982 | 0.164 | - | 0.507 | 0.979 | 0.623 |
Data 7 | 0.384 | 0.324 | 0.987 | 0.0467 | - | 0.171 | 0.987 | 0.411 |
Data 8 | 0.287 | 0.270 | 0.973 | 0.380 | - | 0.575 | 0.964 | 0.678 |
SegNet | ResNet | Ours | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gin. | Alv. | Gin. | Alv. | Gin. | Alv. | |||||||
Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | |
Data 1 | 1.68 | 1.93 | 5.82 | 1.69 | ||||||||
Data 3 | 2.62 | 5.14 | ||||||||||
Data 7 | 1.27 | 2.62 | 1.89 | 1.45 | ||||||||
Data 8 | 1.25 | 2.52 | 2.14 | 5.19 | 2.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.-C.; Chiu, C.-H.; Cai, Z.-Q.; Lin, J.-Y.; Yao, C.-Y.; Lyu, D.-Y.; Lee, S.-Y.; Chen, K.-W.; Chen, I.-Y. OCT-Based Periodontal Inspection Framework. Sensors 2019, 19, 5496. https://doi.org/10.3390/s19245496
Lai Y-C, Chiu C-H, Cai Z-Q, Lin J-Y, Yao C-Y, Lyu D-Y, Lee S-Y, Chen K-W, Chen I-Y. OCT-Based Periodontal Inspection Framework. Sensors. 2019; 19(24):5496. https://doi.org/10.3390/s19245496
Chicago/Turabian StyleLai, Yu-Chi, Chia-Hsing Chiu, Zhong-Qi Cai, Jin-Yang Lin, Chih-Yuan Yao, Dong-Yuan Lyu, Shyh-Yuan Lee, Kuo-Wei Chen, and I-Yu Chen. 2019. "OCT-Based Periodontal Inspection Framework" Sensors 19, no. 24: 5496. https://doi.org/10.3390/s19245496
APA StyleLai, Y. -C., Chiu, C. -H., Cai, Z. -Q., Lin, J. -Y., Yao, C. -Y., Lyu, D. -Y., Lee, S. -Y., Chen, K. -W., & Chen, I. -Y. (2019). OCT-Based Periodontal Inspection Framework. Sensors, 19(24), 5496. https://doi.org/10.3390/s19245496