An Angle of Polarization (AoP) Visualization Method for DoFP Polarization Image Sensors Based on Three Dimensional HSI Color Space
<p>The results of previous AoP data visualization method: (<b>a</b>) Method 1 [<a href="#B21-sensors-19-01713" class="html-bibr">21</a>]; (<b>b</b>) Method 2 [<a href="#B26-sensors-19-01713" class="html-bibr">26</a>]; (<b>c</b>) Method 3 [<a href="#B27-sensors-19-01713" class="html-bibr">27</a>].</p> "> Figure 2
<p>Relation diagram between AoP and <b>I</b> (<span class="html-italic">R</span>, <span class="html-italic">G</span>, <span class="html-italic">B</span>) according to our AoP data visualization method.</p> "> Figure 3
<p>(<b>a</b>) The variation of RGB value with AoP in our method; (<b>b</b>) The variation of HSI value with AoP in our method.</p> "> Figure 4
<p>The numerical simulation results for different method. (<b>a</b>) AoP image by previous method 1; (<b>b</b>) AoP image by previous method 2; (<b>c</b>) AoP image by previous method 3; (<b>d</b>) AoP image by our method.</p> "> Figure 5
<p>Diagram of bilinear interpolation method in DoFP polarization image sensor.</p> "> Figure 6
<p>Experiment results for AoP visualization method. (<b>a</b>) Light intensity image; (<b>b</b>) AoP image by previous method 1; (<b>c</b>) AoP image by previous method 2; (<b>d</b>) AoP image by previous method 3; (<b>e</b>) AoP image by our method. The characterization noise is suppressed in (<b>d</b>) and (<b>e</b>). The AoP images are intuitively in agreement with their shape in (<b>c</b>) and (<b>e</b>), especially in the complex scene 4.</p> "> Figure 7
<p>The enlarged view of <a href="#sensors-19-01713-f006" class="html-fig">Figure 6</a>, which shows the characterization noise on the upper surface of the weight. (<b>a</b>) Previous method 1; (<b>b</b>) Previous method 2; (<b>c</b>) Previous method 3; (<b>d</b>) Our method.</p> ">
Abstract
:1. Introduction
2. Theory of Stokes Polarimetric Imaging
2.1. Polarization Parameters and AoP Visualization Mapping Function
2.2. Polarization Parameters and AoP Visualization Mapping Function
3. AoP Visualization Strategies and Method
- is continuous in .
- ψ and I correspond to each other in a one-to-one manner.
- . AoP has the same physical meaning at the two endpoints of the definition domain, so the right limit of function at left endpoint should be the same with the left limit of function at right endpoint.
- The visualization method can be used to intuitively represent the magnitude and direction of the AoP.
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, H.; Zhao, L.; Li, X.; Wang, H.; Yang, J.; Li, K.; Liu, T. Polarimetric Image Recovery in Turbid Media Employing Circularly Polarized Light. Opt. Express 2018, 26, 25047–25059. [Google Scholar] [CrossRef]
- Treibitz, T.; Schechner, Y.Y. Active Polarization Descattering. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 385–399. [Google Scholar] [CrossRef]
- Guan, J.; Zhu, J. Target Detection in Turbid Medium Using Polarization-Based Range-Gated Technology. Opt. Express 2013, 21, 14152–14158. [Google Scholar] [CrossRef] [PubMed]
- Pierangelo, A.; Benali, A.; Antonelli, M.-R.; Novikova, T.; Validire, P.; Gayet, B.; De Martino, A. Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging. Opt Express 2011, 19, 1582–1593. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Li, P.; Chen, D.; Lv, D.; Ma, H. Physically Realizable Space for the Purity-Depolarization Plane for Polarized Light Scattering Media. Phys. Rev. Lett. 2017, 119, 033202. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, L.; Pan, Q. Spectropolarimetric imaging for pathological analysis of skin. Appl. Opt. 2009, 48, D236–D246. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, A.V.; Ghosh, S.; Anil Kumar, P.S. Simple quadratic magneto-optic Kerr effect measurement system using permanent magnets. AIP Adv. 2017, 7, 056802. [Google Scholar]
- Morel, O.; Stolz, C.; Meriaudeau, F.; Gorria, P. Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging. Appl. Opt. 2006, 45, 4062–4068. [Google Scholar] [CrossRef]
- Fade, J.; Alouini, M. Depolarization Remote Sensing by Orthogonality Breaking. Phys. Rev. Lett. 2012, 109, 043901. [Google Scholar]
- Bystrov, A.; Hoare, E.; Tran, T.Y.; Clarke, N.; Gashinova, M.; Cherniakov, M. Automotive System for Remote Surface Classification. Sensors 2017, 17, 745. [Google Scholar] [CrossRef]
- Lin, S.-S.; Yemelyanov, K.M.; Pugh, E.N.; Engheta, N. Separation and contrast enhancement of overlapping cast shadow components using polarization. Opt. Express 2006, 14, 7099–7108. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gao, J.; Yao, T.; Wang, L.; Sun, Y.; Xie, Z.; Guo, Z. Acquiring reflective polarization from arbitrary multi-layer surface based on Monte Carlo simulation. Opt. Express 2016, 24, 9397–9411. [Google Scholar] [PubMed]
- Xu, Q.; Guo, Z.; Tao, Q.; Jiao, W.; Qu, S.; Gao, J. A novel method of retrieving the polarization qubits after being transmitted in turbid media. J. Opt. 2015, 17, 035606. [Google Scholar]
- Hu, H.; Garcia-Caurel, E.; Anna, G.; Goudail, F. Simplified calibration procedure for Mueller polarimeter in transmission configuration. Opt. Lett. 2014, 39, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Roussel, S.; Boffety, M.; Goudail, F. Polarimetric precision of micropolarizer grid-based camera in the presence of additive and Poisson shot noise. Opt. Express 2018, 26, 29968–29982. [Google Scholar]
- Chen, Z.; Wang, X.; Liang, R. Snapshot phase shift fringe projection 3D surface measurement. Opt. Express 2015, 23, 667–673. [Google Scholar]
- Zhang, J.; Luo, H.; Liang, R.; Zhou, W.; Hui, B.; Chang, Z. PCA-based denoising method for division of focal plane polarimeters. Opt. Express 2017, 25, 2391–2400. [Google Scholar] [CrossRef]
- Garcia, M.; Davis, T.; Blair, S.; Cui, N.; Gruev, V. Bioinspired polarization imager with high dynamic range. Optica 2018, 5, 1240–1246. [Google Scholar]
- Ye, W.; Li, S.; Zhao, X.; Abubakar, A.; Bermak, A. A K Times Singular Value Decomposition Based Image Denoising Algorithm for DoFP Polarization Image Sensors With Gaussian Noise. IEEE Sens. J. 2018, 18, 6138–6144. [Google Scholar] [CrossRef]
- Mihoubi, S.; Lapray, P.J.; Bigue, L. Survey of Demosaicking Methods for Polarization Filter Array Images. Sensors 2018, 18, 3688. [Google Scholar]
- Li, N.; Zhao, Y.; Pan, Q.; Kong, S.G. Demosaicking DoFP images using Newton’s polynomial interpolation and polarization difference model. Opt. Express 2019, 27, 1376–1391. [Google Scholar] [PubMed]
- Scott Tyo, J.; Ratliff, B.M.; Alenin, A.S. Adapting the HSV polarization-color mapping for regions with low irradiance and high polarization. Opt. Lett. 2016, 41, 4759–4762. [Google Scholar] [CrossRef]
- Kruse, A.W.; Alenin, A.S.; Vaughn, I.J.; Tyo, J.S. Overview of visualization strategies for polarimetric imaging data. In Proceedings of the SPIE, Polarization: Measurement, Analysis, and Remote Sensing XIII, Bellingham, WA, USA, 16–17 April 2018. [Google Scholar]
- Zhao, H.; Xu, W.; Zhang, Y.; Li, X.; Zhang, H.; Xuan, J.; Jia, B. Polarization patterns under different sky conditions and a navigation method based on the symmetry of the AOP map of skylight. Opt. Express 2018, 26, 28589–28603. [Google Scholar] [CrossRef]
- Li, N.; Zhao, Y.; Pan, Q.; Kong, S.G. Removal of reflections in LWIR image with polarization characteristics. Opt. Express 2018, 26, 16488–16504. [Google Scholar] [CrossRef]
- Guan, L.; Liu, S.; Chu, J.; Zhang, R.; Chen, Y.; Li, S.; Zhai, L.; Li, Y.; Xie, H. A novel algorithm for estimating the relative rotation angle of solar azimuth through single-pixel rings from polar coordinate transformation for imaging polarization navigation sensors. Optik 2019, 178, 868–878. [Google Scholar]
- Gao, S.; Gruev, V. Gradient-based interpolation method for division-of-focal-plane polarimeters. Opt. Express 2013, 21, 1137–1151. [Google Scholar] [PubMed]
- Wolff, L.B. Polarization vision: A new sensory approach to image understanding. Image Vis. Comput. 1997, 15, 81–93. [Google Scholar] [CrossRef]
- Gagnon, Y.L.; Marshall, N.J. Intuitive representation of photopolarimetric data using the polarization ellipse. J. Exp. Biol. 2016. [Google Scholar] [CrossRef]
- Pinoli, J.-C. The Logarithmic Image Processing Model: Connections with Human Brightness Perception and Contrast Estimators. J. Math. Imaging Vis. 1997, 7, 341–358. [Google Scholar]
- Gao, S.; Gruev, V. Bilinear and bicubic interpolation methods for division of focal plane polarimeters. Opt. Express 2011, 19, 26161–26173. [Google Scholar]
- Ratliff, B.M.; LaCasse, C.F.; Scott Tyo, J. Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery. Opt. Express 2009, 17, 9112–9125. [Google Scholar]
- Hui, W.; Haofeng, H.; Xiaobo, L.; Lin, Z.; Zijian, G.; Xiangying, K.; Tiegen, L. Metal surface detection using division-of-focal-plane imaging polarimetry. In Proceedings of the Third International Conference on Photonics and Optical Engineering, Xi’an, China, 17–19 August 2019. [Google Scholar]
AoP visualization method | 1 | 2 | 3 | Ours |
Characterization noise | exist | exist | no | no |
HSI characterization dimension | 1 | 1 | 1 | 3 |
Intensity range | (0, 1) | 1 | 1 | (0, 1) |
Saturation range | Not available | 1 | 1 | (0, 1) |
Hue range | Not available | (0, 4π/3) | (0, 2π) | 0, 4π/3 |
Number of colors in AoP image | 0 | 4 | 6 | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Hu, H.; Li, X.; Guan, Z.; Zhu, W.; Jiang, J.; Liu, K.; Liu, T. An Angle of Polarization (AoP) Visualization Method for DoFP Polarization Image Sensors Based on Three Dimensional HSI Color Space. Sensors 2019, 19, 1713. https://doi.org/10.3390/s19071713
Wang H, Hu H, Li X, Guan Z, Zhu W, Jiang J, Liu K, Liu T. An Angle of Polarization (AoP) Visualization Method for DoFP Polarization Image Sensors Based on Three Dimensional HSI Color Space. Sensors. 2019; 19(7):1713. https://doi.org/10.3390/s19071713
Chicago/Turabian StyleWang, Hui, Haofeng Hu, Xiaobo Li, Zijian Guan, Wanshan Zhu, Junfeng Jiang, Kun Liu, and Tiegen Liu. 2019. "An Angle of Polarization (AoP) Visualization Method for DoFP Polarization Image Sensors Based on Three Dimensional HSI Color Space" Sensors 19, no. 7: 1713. https://doi.org/10.3390/s19071713
APA StyleWang, H., Hu, H., Li, X., Guan, Z., Zhu, W., Jiang, J., Liu, K., & Liu, T. (2019). An Angle of Polarization (AoP) Visualization Method for DoFP Polarization Image Sensors Based on Three Dimensional HSI Color Space. Sensors, 19(7), 1713. https://doi.org/10.3390/s19071713