An Improved ACKF/KF Initial Alignment Method for Odometer-Aided Strapdown Inertial Navigation System
<p>The vehicle’s simulation trajectory.</p> "> Figure 2
<p>The initial alignment simulation results of EKF method. The three figures are the attitude error of <span class="html-italic">x</span> axis (pitch), <span class="html-italic">y</span> axis (roll) and <span class="html-italic">z</span> axis (yaw) respectively.</p> "> Figure 3
<p>The initial alignment simulation results of AEKF method. The three figures are the attitude error of <span class="html-italic">x</span> axis (pitch), <span class="html-italic">y</span> axis (roll) and <span class="html-italic">z</span> axis (yaw) respectively.</p> "> Figure 4
<p>The initial alignment simulation results of CKF method. The three figures are the attitude error of <span class="html-italic">x</span> axis (pitch), <span class="html-italic">y</span> axis (roll) and <span class="html-italic">z</span> axis (yaw) respectively.</p> "> Figure 5
<p>The initial alignment simulation results of ACKF/KF method. The three figures are the attitude error of <span class="html-italic">x</span> axis (pitch), <span class="html-italic">y</span> axis (roll) and <span class="html-italic">z</span> axis (yaw) respectively.</p> "> Figure 6
<p>The comparison of estimation error of pitch angle. The pink line denotes the estimation by EKF, the green line denotes the estimation by CKF, the red line denotes the estimation by AEKF, and the blue line denotes the estimation by ACKF/KF.</p> "> Figure 7
<p>Comparison of estimation error of roll angle. The pink line denotes the estimation by EKF, the green line denotes the estimation by CKF, the red line denotes the estimation by AEKF, and the blue line denotes the estimation by ACKF/KF.</p> "> Figure 8
<p>Comparison of estimation error of yaw angle. The pink line denotes the estimation by EKF, the green line denotes the estimation by CKF, the red line denotes the estimation by AEKF, and the blue line denotes the estimation by ACKF/KF.</p> "> Figure 9
<p>The vehicle test trajectory.</p> "> Figure 10
<p>The estimated error of pitch angles. The pink line denotes the estimation by EKF, the green line denotes the estimation by CKF, the red line denotes the estimation by AEKF, and the blue line denotes the estimation by ACKF/KF.</p> "> Figure 11
<p>The estimated error of roll angles. The pink line denotes the estimation by EKF, the green line denotes the estimation by CKF, the red line denotes the estimation by AEKF, and the blue line denotes the estimation by ACKF/KF.</p> "> Figure 12
<p>The estimated error of yaw angles. The pink line denotes the estimation by EKF, the green line denotes the estimation by CKF, the red line denotes the estimation by AEKF, and the blue line denotes the estimation by ACKF/KF.</p> ">
Abstract
:1. Introduction
2. Nonlinear Initial Alignment Equation
2.1. SINS Error Equation with Large Misalignment Angle
2.2. Odometer/Gyroscopes Dead Reckoning Error Equation
2.3. Kalman Filter Equation
3. Improved Adaptive CKF/KF Method
3.1. Cubature Kalman Filter
- ▪ Time update:
- (1)
- Assume that the posterior density function is known, the Cholesky Decomposition of error covariance is:
- (2)
- Calculate the cubature points:
- (3)
- Propagate cubature points through the state equation:
- (4)
- Estimate state predictions:
- (5)
- Estimate the state error covariance predictor:
- ▪ Measurement update:
- (1)
- Cholesky decomposition of :
- (2)
- Calculate cubature points:
- (3)
- Propagate cubature points by the measurement equation:
- (4)
- Measurement prediction:
- (5)
- Estimate the self-correlation covariance matrix:
- (6)
- Estimate the mutual correlation covariance matrix:
- (7)
- Estimate the gain matrix:
- (8)
- Calculate the state estimation:
- (9)
- Calculate the state error covariance estimation:
3.2. Sage-Husa Adaptive Filter
3.3. ACKF/KF Method
- ▪ The system description:
- ▪ Time update:
- (1)
- Assume that the posterior density function is known, the Cholesky Decomposition of error covariance is:
- (2)
- Calculate the cubature points:
- (3)
- Propagate cubature points through the state equation:
- (4)
- Estimate state predictions:
- (5)
- Estimate the state error covariance predictor:
- ▪ Measurement update
- (1)
- Predict the measurement:
- (2)
- Calculate the innovation:
- (3)
- Estimate the measurement noise:
- (4)
- Estimate the self-correlation covariance matrix:
- (5)
- Estimate the mutual correlation covariance matrix:
- (6)
- Estimate the gain matrix:
- (7)
- Calculate the state estimation:
- (8)
- Calculate the state error covariance estimation:
4. Simulation and Experiment
4.1. Simulation and Analysis
4.2. Experiments and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, L.; Li, J.; Chen, S. Initial alignment by attitude estimation for strapdown inertial navigation systems. IEEE Trans. Instrum. Meas. 2015, 64, 784–794. [Google Scholar] [CrossRef]
- Huang, W.; Fang, T.; Luo, L.; Zhao, L.; Che, F. A damping grid strapdown inertial navigation system based on a Kalman filter for ships in polar regions. Sensors 2017, 17, 1551. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Park, C.G. Enhanced pedestrian navigation based on course angle error estimation using cascaded Kalman filters. Sensors 2018, 4, 1281. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, X. Application of improved 5th-cubature Kalman filter in initial strapdown inertial navigation system alignment for large misalignment angles. Sensors 2018, 18, 659. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.B.; Hu, B.Q.; Li, A.; Qin, F.J. Strapdown inertial navigation system alignment based on marginalized unscented Kalman filter. IET Sci. Meas. Technol. 2013, 7, 128–138. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, F.; Gao, W.; Wang, Y. An improved strapdown inertial navigation system initial alignment algorithm for unmanned vehicles. Sensors 2018, 10, 3297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, C.; Chen, Q.W.; Yan, F. Robust H-infinity CKF/KF hybrid filtering method for SINS alignment. IET Sci. Meas. Technol. 2016, 10, 916–925. [Google Scholar] [CrossRef]
- Yan, G.M.; Qin, Y.Y. Novel approach to in-flight alignment of micro-mechanical SINS/GPS with heading uncertainty. Chin. J. Sens. Act. 2007, 20, 238–242. [Google Scholar] [CrossRef]
- Pan, X.; Wu, Y. Underwater Doppler navigation with self-calibration. J. Navig. 2015, 69, 295–312. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, Y.; Wu, M.; Wu, W.; Hu, X.; Shen, L. INS/GPS integration: Global observability analysis. IEEE Trans. Veh. Technol. 2009, 58, 1129–1142. [Google Scholar] [CrossRef]
- Ali, J.; Ushaq, M. A consistent and robust Kalman filter design for in-motion alignment of inertial navigation system. Measurement 2009, 42, 577–582. [Google Scholar] [CrossRef]
- Skog, I.; Händel, P. In-car positioning and navigation technologies: A survey. IEEE Trans. Intell. Transp. Syst. 2009, 10, 4–21. [Google Scholar] [CrossRef]
- Petritoli, E.; Leccese, F. Improvement of altitude precision in indoor and urban canyon navigation for small flying vehicles. In Proceedings of the 2015 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 4–5 June 2015; pp. 56–60. [Google Scholar] [CrossRef]
- Ci, W.Y.; Huang, Y.P.; Hu, X. Review of visual odometry algorithms. Appl. Res. Comput. 2018, 36. [Google Scholar] [CrossRef]
- Matsuki, H.; Stumberg, L.; Usenko, V.; Stückler, J.; Cremers, D. Omnidirectional DSO: Direct sparse odometry with fisheye cameras. IEEE Robot. Autom. Lett. 2018, 3, 3693–3700. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Wang, J.G. Research on initial alignment and self-calibration of rotary strapdown inertial navigation systems. Sensors 2015, 15, 3154–3171. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Ren, S.Q.; Chen, X.J.; Wang, Z.H. An optimization-based initial alignment and calibration algorithm of land-vehicle SINS in-motion. Sensors 2018, 18. [Google Scholar] [CrossRef] [PubMed]
- Georgy, J.; Karamat, T.; Iqbal, U.; Noureldin, A. Enhanced MEMS-IMU/odometer/GPS integration using mixture particle filter. GPS Solut. 2011, 15, 239–252. [Google Scholar] [CrossRef]
- Wang, M.; Wu, W.; Zhou, P.Y.; He, X.F. State transformation extended Kalman filter for GPS/SINS tightly coupled integration. GPS Solut. 2018, 22, 112. [Google Scholar] [CrossRef]
- Atia, M.M.; Liu, S.; Nematallah, H.; Karamat, T.B.; Noureldin, A. Integrated indoor navigation system for ground vehicles with automatic 3-D alignment and position initialization. IEEE Trans. Veh. Technol. 2015, 64, 1279–1292. [Google Scholar] [CrossRef]
- Julier, S.J.; Uhlman, J.K.; Durrant-Whyte, H.F. A new approach for filtering nonlinear systems. In Proceedings of the IEEE American Control Conference, Seattle, WA, USA, 21–23 June 1995; pp. 1628–1632. [Google Scholar] [CrossRef]
- Gao, Y.B.; Liu, M.; Li, G.C.; Guang, X.X. Initial alignment for SINS based on pseudo-earth frame in polar regions. Sensors 2017, 17, 1416. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.L.; Wang, J.L.; Lu, L.Q.; Wu, W.Q. A novel scheme for DVL-aided SINS in-motion alignment using UKF techniques. Sensors 2013, 13, 1046–1063. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S. Cubature Kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef]
- Jia, B.; Xin, M.; Cheng, Y. High-degree cubature Kalman filter. Automatica 2013, 49, 510–518. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Wang, J.G. A strapdown interial navigation system/Beidou/Doppler velocity log integrated navigation algorithm based on a cubature Kalman filter. Sensors 2014, 14, 1511–1527. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Han, C.Z. Adaptive UKF method with applications to target tracking. Acta Autom. Sin. 2011, 37, 755–759. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, M.; Hu, X.; Hu, D. Self-calibration for land navigation using inertial sensors and odometer: Observability analysis. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Chicago, IL, USA, 10–13 August 2009. [Google Scholar] [CrossRef]
- Wang, J.G.; Gopaul, N.; Scherzinger, B. Simplified algorithms of variance component estimation for static and kinematic GPS single point positioning. J. Glob. Position. Syst. 2009, 8, 43–52. [Google Scholar] [CrossRef]
- Wang, J.G.; Gopaul, S.N.; Guo, J.M. Adaptive Kalman filtering based on posteriori variance-covariance components estimation. In Proceedings of the CPGPS 2010 Technical Forum, Shanghai, China, 17–20 August 2010. [Google Scholar] [CrossRef]
- Dong, Q.H.; Li, Y.B.; Sun, Q.; Zhang, Y. An adaptive initial alignment algorithm based on variance component estimation for a strapdown inertial navigation system for AUV. Symmetry 2017, 9, 129. [Google Scholar] [CrossRef]
- Narasimhappa, M.; Rangababu, P.; Sabat, S.L.; Nayak, J. A modified Sage-Husa adaptive Kalman filter for denoising Fiber Optic Gyroscope signal. In Proceedings of the 2012 Annual IEEE India Conference (INDICON), Kochi, India, 7–9 December 2012; pp. 1266–1271. [Google Scholar] [CrossRef]
- Jin, M.; Zhao, J.; Jin, J.; Yu, G.; Li, W. The adaptive Kalman filter based on fuzzy logic for inertial motion capture system. Measurement 2014, 49, 196–204. [Google Scholar] [CrossRef]
Algorithm | Mean | Standard Deviation |
---|---|---|
EKF | [16.2312′ 13.1301′ 23.7061′] T | [0.4373′ 0.5588′ 0.6972′] T |
AEKF | [7.0033′ 1.3920′ −3.5554′] T | [0.1118′ 0.1490′ 0.5211′] T |
CKF | [12.9795′ 8.1662′ 22.2739′] T | [0.4318′ 0.5020′ 0.6329′] T |
ACKF/KF | [6.8852′ 1.2172′ −0.7645′] T | [0.2279′ 0.0787′ 0.7646′] T |
Algorithm | Mean | Standard Deviation |
---|---|---|
EKF | [0.139′ 1.7329′ 10.7311′] T | [0.2296′ 0.2498′ 0.1677′] T |
AEKF | [0.6441′ 1.9502′ 8.2875′] T | [0.1748′ 0.1984′ 0.1723′] T |
CKF | [0.5891′ 1.9932′ 3.7184′] T | [0.0206′ 0.0920′ 0.0379′] T |
ACKF/KF | [0.4495′ 1.8672′ 1.2627′] T | [0.0437′ 0.0853′ 0.0352′] T |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Ren, S.; Yi, G.; Zhong, J.; Wang, Z. An Improved ACKF/KF Initial Alignment Method for Odometer-Aided Strapdown Inertial Navigation System. Sensors 2018, 18, 3896. https://doi.org/10.3390/s18113896
Gao K, Ren S, Yi G, Zhong J, Wang Z. An Improved ACKF/KF Initial Alignment Method for Odometer-Aided Strapdown Inertial Navigation System. Sensors. 2018; 18(11):3896. https://doi.org/10.3390/s18113896
Chicago/Turabian StyleGao, Kang, Shunqing Ren, Guoxing Yi, Jiapeng Zhong, and Zhenhuan Wang. 2018. "An Improved ACKF/KF Initial Alignment Method for Odometer-Aided Strapdown Inertial Navigation System" Sensors 18, no. 11: 3896. https://doi.org/10.3390/s18113896
APA StyleGao, K., Ren, S., Yi, G., Zhong, J., & Wang, Z. (2018). An Improved ACKF/KF Initial Alignment Method for Odometer-Aided Strapdown Inertial Navigation System. Sensors, 18(11), 3896. https://doi.org/10.3390/s18113896