A New Mechanism for Soft Landing in Robotic Space Exploration
<p>Schematic model of the lander with variable radius drum (VRD)-based deceleration mechanism: The model is shown in a side view (<b>a</b>), in a three-quarter view (<b>b</b>), and from the bottom (<b>c</b>). The lander payload is shown in cyan; the spring system and fixed radius pulley (FRP<sub>1</sub>) are in blue; the legs, FRP<sub>2</sub>, and VRD system are shown in red; and the axles and pinions are shown in green.</p> "> Figure 2
<p>Mechanics of landing: During the free-fall phase, the lander acquires kinetic energy from the transformation of gravitational potential energy to motion; during the impact phase, energy is transformed into elastic potential energy and is stored in the spring.</p> "> Figure 3
<p>How energy is stored in springs: comparison between (<b>a</b>) simple, (<b>b</b>) preloaded, and (<b>c</b>) ideal constant-force springs.</p> "> Figure 4
<p>Model of the lander: (<b>a</b>) The main architecture with the lander frame, the leg attachment point, and the leg itself is shown. The ground and gravity vector are shown for reference. (<b>b</b>) The VRD-based constant-force mechanism is shown. (<b>c</b>) Only the VRD is shown to highlight the synthesis nomenclature.</p> "> Figure 5
<p>Main phases of the mechanism operation: (<b>a</b>) The initial configuration, (<b>b</b>) the in-operation configuration, and (<b>c</b>) the end-stop configuration.</p> "> Figure 6
<p>Example of VRD synthesis: The profile of the VRD pulley is shown for the closed leg configuration (in blue) and for the open leg configuration (in red); the (FRP<sub>1</sub>) is shown in black, as a small circle. The cables are shown as dashed lines and converge on the idler pulley. The leg hinge <span class="html-italic">P</span> is shown as a black asterisk.</p> "> Figure 7
<p>Dynamics model of the lander: (<b>a</b>) The chassis is shown with the forces applied in the <span class="html-italic">x</span> and <span class="html-italic">y</span> direction; the moments <math display="inline"><semantics> <msub> <mi>M</mi> <mi>k</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>M</mi> <mrow> <mi>c</mi> <mi>s</mi> <mi>t</mi> </mrow> </msub> </semantics></math> are not shown to avoid clutter. (<b>b</b>) The model of the leg is illustrated, showing the applied forces and moments. The leg is attached through a hinge located in <span class="html-italic">G</span>. (<b>c</b>) a yielded leg is shown to highlight the angle <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>; the leg at rest is shown as a thick dashed line.</p> "> Figure 8
<p>Force-angle plots for the suspension system used in the numerical simulations and comparison. In (<b>a</b>) the moments <math display="inline"><semantics> <mrow> <mo stretchy="false">∥</mo> <msub> <mi mathvariant="bold">M</mi> <mi>k</mi> </msub> <mo stretchy="false">∥</mo> </mrow> </semantics></math> in the four use-cases: the solid black line represents the linear spring, the blue dashed line indicates the preloaded linear spring, while the red dot-dashed line represents the response of the VRD suspension system. In (<b>b</b>) A comparison of the moment <math display="inline"><semantics> <mrow> <mo stretchy="false">∥</mo> <msub> <mi mathvariant="bold">M</mi> <mi>k</mi> </msub> <mo stretchy="false">∥</mo> </mrow> </semantics></math> in the synthesized VRD system and its approximation (Equation (<a href="#FD27-robotics-08-00103" class="html-disp-formula">27</a>)) in the dynamics simulator, both for the damped and non-damped configurations.</p> "> Figure 9
<p>Results of the dynamics simulation, with emphasis on the deceleration profile: Response of the damped sub-configuration of each of the four suspension systems. In the top plots, the evolution of the <span class="html-italic">y</span> coordinate of the barycentre <span class="html-italic">G</span> can be seen against time. The red lines represent in both rows of plots the moment of maximum yield of the suspension system, i.e., the inversion point. In (<b>a</b>) VRD mechanism, (<b>b</b>) Linear non-preloaded, (<b>c</b>) Linear preloaded (<math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>), (<b>d</b>) Linear preloaded (<math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mi>p</mi> </msub> <mo>></mo> <mn>0</mn> </mrow> </semantics></math>).</p> "> Figure 10
<p>Results of the dynamics simulation, with emphasis on energy: In the top plots, a comparison of the deceleration profile <math display="inline"><mrow> <msub> <mrow> <mover accent="true"> <mi>y</mi> <mo>¨</mo> </mover> </mrow> <mrow> <mi>G</mi> </mrow> </msub> </mrow></math> (in blue) with the theoretical best deceleration profile <math display="inline"><mrow> <msub> <mrow> <mover accent="true"> <mi>y</mi> <mo>¨</mo> </mover> </mrow> <mrow> <mi>G</mi> <mo>,</mo> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow></math> (in red) is shown. In the bottom row of plots, the deceleration energy <math display="inline"><mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> </mrow> </msub> </mrow></math> is shown against the theoretical best <math display="inline"><mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mo>,</mo> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow></math> (in red). The dash-dotted line represents the moment of maximum yield of the suspension system, i.e., the inversion point. In (<b>a</b>) VRD mechanism, (<b>b</b>) Linear non-preloaded, (<b>c</b>) Linear preloaded (<math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>), (<b>d</b>) Linear preloaded (<math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mi>p</mi> </msub> <mo>></mo> <mn>0</mn> </mrow> </semantics></math>).</p> "> Figure 11
<p>Map of the maximum deceleration <math display="inline"><mrow> <msub> <mrow> <mover accent="true"> <mi>y</mi> <mo>¨</mo> </mover> </mrow> <mrow> <mi>G</mi> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow></math> for (<b>a</b>) different values of the gravity acceleration <span class="html-italic">g</span> and the mass of the lander <span class="html-italic">m</span> and (<b>b</b>) different values of the environmental conditions: ground coefficient of friction <math display="inline"><mrow> <msub> <mi>µ</mi> <mrow> <mi>g</mi> <mi>d</mi> </mrow> </msub> </mrow></math> and ground stiffness <math display="inline"><mrow> <msub> <mi>k</mi> <mrow> <mi>g</mi> <mi>d</mi> </mrow> </msub> </mrow></math>. The plot is set to zero (non-feasibility) where compenetration with the ground occurs in the simulation.</p> "> Figure 12
<p>Results of the dynamics simulation, with emphasis on the oscillations of the barycentre due to the leg mass: The value <math display="inline"><mrow> <msub> <mi>m</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mn>0.02</mn> <mtext> </mtext> <mi>kg</mi> </mrow></math> is that of the VRD reference design. The red line shows the the theoretical best deceleration profile <math display="inline"><mrow> <msub> <mrow> <mover accent="true"> <mi>y</mi> <mo>¨</mo> </mover> </mrow> <mrow> <mi>G</mi> <mo>,</mo> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow></math>. The dash-dotted line represents the moment of maximum yield of the suspension system, i.e., the inversion point. In (<b>a</b>) <math display="inline"><mrow> <msub> <mi>m</mi> <mi>l</mi> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow></math>, (<b>b</b>) <math display="inline"><mrow> <msub> <mi>m</mi> <mi>l</mi> </msub> <mo>=</mo> <mn>0.5</mn> <msub> <mi>m</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow></math>, (<b>c</b>) <math display="inline"><mrow> <msub> <mi>m</mi> <mi>l</mi> </msub> <mo>=</mo> <mn>0.2</mn> <msub> <mi>m</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow></math>, (<b>d</b>) <math display="inline"><mrow> <msub> <mi>m</mi> <mi>l</mi> </msub> <mo>=</mo> <mn>0.1</mn> <msub> <mi>m</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow></math>.</p> ">
Abstract
:1. Introduction
2. The Mechanics of Impact and Landing
3. Model
- a leg, used to translate the impact motion into rotational motion around point P;
- a Fixed Radius Pulley (FRP2), attached to the leg, around which a cable (red) is wound;
- a Variable Radius Pulley (VRD), around which the same cable (red) is wound;
- another Fixed Radius Pulley (FRP1), integral to the VRD and around which a second cable is wound;
- a spring, which connects the frame to the second cable (blue).
- (A)
- linear spring,
- (B)
- preloaded spring (nonzero stiffness),
- (C)
- preloaded spring (zero stiffness),
- (D)
- VRD-based spring system.
3.1. Synthesis of the Variable Radius Drum
3.2. Dynamical Model
3.3. Stiffness Model
3.4. Characterization of the Model
4. Numerical Simulations
4.1. VRD Reference Design
4.2. Setup
4.3. Results
4.4. Parameter Characterization
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
References
- Hilderman, R.; Mueller, W.; Mantus, M. Landing dynamics of the lunar excursion module. J. Spacecr. Rocket. 1966, 3, 1484–1489. [Google Scholar] [CrossRef]
- Doiron, H.H.; Zupp, G.A., Jr. Apollo Lunar Module Landing Dynamics. In Proceedings of the 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta, GA, USA, 3–6 April 2000; Volume 5, pp. 283–293. [Google Scholar]
- Adams, D. Mars Exploration Rover Airbag Landing Loads Testing and Analysis. In Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, CA, USA, 19–22 April 2004; Volume 4, pp. 3105–3115. [Google Scholar]
- Stein, J.; Sandy, C. Recent Development in Inflatable Airbag Impact Attenuation Systems for Mars Exploration. In Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, USA, 7–10 April 2003; Volume 6, pp. 4552–4557. [Google Scholar]
- Karlgaard, C.; Kutty, P.; Schoenenberger, M.; Shidner, J. Mars Science Laboratory Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction; National Aeronautics and Space Administration(NASA): Washington, DC, USA, 2013; Volume 148, pp. 1555–1574.
- Ulamec, S.; O’Rourke, L.; Biele, J.; Grieger, B.; Andrés, R.; Lodiot, S.; Muñoz, P.; Charpentier, A.; Mottola, S.; Knollenberg, J.; et al. Rosetta Lander—Philae: Operations on comet 67P/Churyumov-Gerasimenko, analysis of wake-up activities and final state. Acta Astronaut. 2017, 137, 38–43. [Google Scholar] [CrossRef]
- Ulamec, S.; Biele, J. Surface elements and landing strategies for small bodies missions—Philae and beyond. Adv. Space Res. 2009, 44, 847–858. [Google Scholar] [CrossRef]
- Roll, R.; Witte, L. ROSETTA lander Philae: Touch-down reconstruction. Planet. Space Sci. 2016, 125, 12–19. [Google Scholar] [CrossRef]
- Ulamec, S.; Fantinati, C.; Maibaum, M.; Geurts, K.; Biele, J.; Jansen, S.; Küchemann, O.; Cozzoni, B.; Finke, F.; Lommatsch, V.; et al. Rosetta Lander—Landing and operations on comet 67P/Churyumov–Gerasimenko. Acta Astronaut. 2016, 125, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Admire, J.; MacKey, A. Dynamic Analysis of a Multi-legged Lunar Landing Vehicle to Determine Structural Loads during Touchdown; National Aeronautics and Space Administration(NASA): Washington, DC, USA, 1965. Available online: https://searchworks.stanford.edu/view/8599403 (accessed on 12 December 2019).
- Çelik, O.; Sánchez, J. Opportunities for ballistic soft landing in binary asteroids. J. Guid. Control. Dyn. 2017, 40, 1390–1402. [Google Scholar] [CrossRef]
- Lin, Q.; Nie, H.; Ren, J.; Chen, J. Investigation on design and reliability analysis of a new deployable and lockable mechanism. Acta Astronaut. 2012, 73, 183–192. [Google Scholar] [CrossRef]
- Zheng, G.; Nie, H.; Luo, M.; Chen, J.; Man, J.; Chen, C.; Lee, H. Parametric design and analysis on the landing gear of a planet lander using the response surface method. Acta Astronaut. 2018, 148, 225–234. [Google Scholar] [CrossRef]
- Zhang, K.; Chermprayong, P.; Tzoumanikas, D.; Li, W.; Grimm, M.; Smentoch, M.; Leutenegger, S.; Kovac, M. Bioinspired design of a landing system with soft shock absorbers for autonomous aerial robots. J. Field Robot. 2019, 36, 230–251. [Google Scholar] [CrossRef] [Green Version]
- Maeda, T.; Otsuki, M.; Hashimoto, T. Experimental Validation of Semi-Active Landing Gear for Touchdown with Attitude Disturbance. In Proceedings of the AIAA SPACE 2016, Long Beach, CA, USA, 13–16 September 2016. [Google Scholar]
- Lin, Q.; Kang, Z.; Ren, J.; Zhao, Q.; Nie, H. Impact analysis of lunar lander soft landing performance caused by the body gravity centerline shift. J. Aerosp. Eng. 2015, 28. [Google Scholar] [CrossRef]
- Yokoyama, T.; Higuchi, K. Estimate of impact force at landing on lunar surface by SPH method. In Proceedings of the Earth & Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments, Long Beach, CA, USA, 3–5 March 2008; Volume 323. [Google Scholar]
- Biele, J.; Ulamec, S.; Richter, L.; Knollenberg, J.; Kührt, E.; Möhlmann, D. The putative mechanical strength of comet surface material applied to landing on a comet. Acta Astronaut. 2009, 65, 1168–1178. [Google Scholar] [CrossRef]
- Biele, J.; Ulamec, S.; Maibaum, M.; Roll, R.; Witte, L.; Jurado, E.; Muñoz, P.; Arnold, W.; Auster, H.U.; Casas, C.; et al. The landing(s) of Philae and inferences about comet surface mechanical properties. Science 2015, 349. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zou, M.; Dang, Z.; Chen, B.; Zhou, T.; Su, B. Modelling of flexible metal wheels for planetary rover on deformable terrain. Thin-Walled Struct. 2019, 141, 97–110. [Google Scholar] [CrossRef]
- Yang, C.; Vora, H.; Chang, Y. Behavior of auxetic structures under compression and impact forces. Smart Mater. Struct. 2018, 27. [Google Scholar] [CrossRef]
- Debeau, D.; Seepersad, C.; Haberman, M. Impact behavior of negative stiffness honeycomb materials. J. Mater. Res. 2018, 33, 290–299. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.; Du, B.; Zhou, H.; Liu, H.; Guo, Y.; Li, W.; Fang, D. Dynamic crushing behavior and energy absorption of graded lattice cylindrical structure under axial impact load. Thin-Walled Struct. 2018, 127, 333–343. [Google Scholar] [CrossRef]
- Seriani, S.; Scalera, L.; Gasparetto, A.; Gallina, P. Preloaded structures for space exploration vehicles. In Mechanisms and Machine Science; Springer: Singapore, 2019; Volume 66, pp. 129–137. [Google Scholar]
- Watanabe, T.; Hara, S.; Otsuki, M. Study on passive momentum exchange landing gear using two-dimensional analysis. Acta Astronaut. 2014, 105, 407–416. [Google Scholar] [CrossRef]
- Kantsiper, B. The double asteroid redirection test (DART) mission electric propulsion trade. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017. [Google Scholar] [CrossRef]
- Yao, N.; Li, M. Research on Buffer Mechanism and Impact Dynamics of Pre-Folded Metal Honeycomb Structure. In Proceedings of the 68th International Astronautical Congress (IAC-17), Adelaide, Australia, 25 September 2017; pp. 932–939. [Google Scholar]
- Schröder, S.; Grimm, C.; Witte, L. A crushable shell for small body landers. CEAS Space J. 2019. [Google Scholar] [CrossRef]
- Schröder, S.; Reinhardt, B.; Brauner, C.; Gebauer, I.; Buchwald, R. Development of a Marslander with crushable shock absorber by virtual and experimental testing. Acta Astronaut. 2017, 134, 65–74. [Google Scholar] [CrossRef]
- Wu, H.; Wang, C.; Ding, J.; Ding, Z. Dynamics simulation analysis for novel lander based on two kinds of landing mode. In Proceedings of the 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China, 14–15 January 2017; pp. 8–12. [Google Scholar] [CrossRef]
- Hashimoto, T.; Yamada, T.; Kikuchi, J.; Otsuki, M.; Ikenaga, T. Cubesat Semi-Hard Moon Impactor: Omotenashi. In Proceedings of the conference 68th International Astronautical Congress (IAC-17), Adelaide, Australia, 25–29 September 2017; pp. 2525–2530. [Google Scholar]
- Punzo, G.; McGookin, E. Engineering the locusts: Hind leg modelling towards the design of a bio-inspired space hopper. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2016, 230, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Saeki, N. Gear-Part-Flying Mechanism for planetary exploration spacecraft landing. In Proceedings of the 2013 IEEE International Symposium on Industrial Electronics, Taipei, Taiwan, 28–31 May 2013. [Google Scholar] [CrossRef]
- Prakash, R.; Braun, R.; Colby, L.; Francis, S.; Gündüz, M.; Flaherty, K.; Lafleur, J.; Wright, H. Design of a long endurance Titan VTQL vehicle. In Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2006; Volume 2006. [Google Scholar]
- Huang, M. Control strategy of launch vehicle and lander with adaptive landing gear for sloped landing. Acta Astronaut. 2019, 161, 509–523. [Google Scholar] [CrossRef]
- Howe, S.; Obrien, R.; Ambrosi, R.; Gross, B.; Katalenich, J.; Sailer, L.; McKay, M.; Bridges, J.; Bannister, N. The Mars Hopper: An impulse driven, long range, long-lived mobile platform utilizing in-situ Martian resources. Acta Astronaut. 2011, 69, 1050–1056. [Google Scholar] [CrossRef]
- Davoodi, F.; Acikmese, B. REARM: Re-entry hopper space-craft system on mars. In Proceedings of the AIAA Space 2014 Conference and Exposition, San Diego, CA, USA, 4–7 August 2014. [Google Scholar]
- Csohanim, B.; Cunio, P.; Hoffman, J.; Joyce, M.; Mosher, T.; Tuohy, S. Taking the Next Giant Leap; National Aeronautics and Space Administration(NASA): Washington, DC, USA, 2009; pp. 481–490.
- Luo, C.; Yu, L.; Ren, P. A Vision-Aided Approach to Perching a Bioinspired Unmanned Aerial Vehicle. IEEE Trans. Ind. Electron. 2018, 65, 3976–3984. [Google Scholar] [CrossRef]
- Seriani, S.; Gallina, P. Variable radius drum mechanisms. J. Mech. Robot. 2016, 8, 021016. [Google Scholar] [CrossRef]
- Scalera, L.; Gallina, P.; Seriani, S.; Gasparetto, A. Cable-Based Robotic Crane (CBRC): Design and Implementation of Overhead Traveling Cranes Based on Variable Radius Drums. IEEE Trans. Robot. 2018, 34, 474–485. [Google Scholar] [CrossRef]
- Seriani, S.; Gallina, P.; Scalera, L.; Lughi, V. Development of n-DoF Preloaded structures for impact mitigation in cobots. J. Mech. Robot. 2018, 10. [Google Scholar] [CrossRef]
- Scalera, L.; Palomba, I.; Wehrle, E.; Gasparetto, A.; Vidoni, R. Natural Motion for Energy Saving in Robotic and Mechatronic Systems. Appl. Sci. 2019, 9, 3516. [Google Scholar] [CrossRef] [Green Version]
- Seriani, S.; Gallina, P.; Wedler, A. A modular cable robot for inspection and light manipulation on celestial bodies. Acta Astronaut. 2016, 123, 145–153. [Google Scholar] [CrossRef]
- Shirafuji, S.; Ikemoto, S.; Hosoda, K. Designing Noncircular Pulleys to Realize Target Motion between Two Joints. IEEE/ASME Trans. Mechatronics 2017, 22, 487–497. [Google Scholar] [CrossRef]
- Endo, G.; Yamada, H.; Yajima, A.; Ogata, M.; Hirose, S. A passive weight compensation mechanism with a non-circular pulley and a spring. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 3843–3848. [Google Scholar] [CrossRef] [Green Version]
- Suh, J.W.; Kim, K.Y. Harmonious cable actuation mechanism for soft robot joints using a pair of noncircular pulleys. J. Mech. Robot. 2018, 10. [Google Scholar] [CrossRef]
- Scalera, L.; Gasparetto, A.; Zanotto, D. Design and Experimental Validation of a 3-DOF Underactuated Pendulum-Like Robot. IEEE/ASME Trans. Mechatron. 2019. [Google Scholar] [CrossRef]
- Dutta, S.; Clark, I.G.; Russell, R.P.; Braun, R. Statistical Entry, Descent and Landing Performance Reconstruction of the Mars Phoenix Lander. In Proceedings of the 8th International Planetary Probe Workshop, Portsmouth, VA, USA, 6–10 June 2011. [Google Scholar]
- Way, D.; Powell, R.; Chen, A.; Steltzner, A.; Martin, A.; Burkhart, P.; Mendeck, G. Mars science laboratory: Entry, descent, and landing system performance. In Proceedings of the 2007 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2007. [Google Scholar] [CrossRef] [Green Version]
Type | References | Touchdown Velocity | Soft-Landing Method | Reusability | Pros | Cons |
---|---|---|---|---|---|---|
Real missions | Rosetta [7,8,9] | 1.01 m/s | Structural flexibility and electromechanical damping | Yes | Tuning of the damping parameters possible | Not passive, requires control system |
MER A/B [3] | 12 m/s | Airbags | No | Light, redundant, passive (after deployment) | Imprecise landing location | |
Phoenix lander [49] | 2.5 m/s | Powered landing and structural flexibility | Yes | Precise landing location, allows adjustments | Not passive, requires control system, complex system, dust contamination | |
MSL [5,50] | 0.75 m/s | Sky crane and structural flexibility of the rocker bogies | No | Precise landing location, allows adjustments, limits dust interference | Not passive, requires control system, extremely complex system, high level of autonomy required | |
Programmed | Omotenashi [31] | 20–30 m/s | Airbags | No | Cheap, light, passive (after deployment) | Very imprecise landing location, high impact velocity conditions payload |
Hypothetical/ proposed | [30] | 2–3.5 m/s | Powered landing and flexible landing legs | Yes | Precise landing location, allows adjustments | Not passive, requires control system, complex system, dust contamination |
[34] | - | |||||
[35] | 4 m/s | Powered landing and actuated landing legs | Yes | |||
[10] | 0–3.7 m/s | Crushable structures | No | Cheap, light, reliable, passive, limits dust interference | Must be tuned adequately | |
[28] | 3 m/s | |||||
[12] | – | |||||
[33] | 3.13 m/s | Linear spring with release mechanism | No | |||
Our solution | – | 3.13 m/s | VRD-based landing system | Yes | Optimized energy absorption, light, passive, limits dust interference | Complexity of mechanism, rebounds possible |
Parameter (Fixed) | Value | Parameter (Optimized) | Value | Characteristics | Value |
---|---|---|---|---|---|
220 N | r | 0.0500 m | 1.4715 J | ||
k | 14,700 N/m | 0.0032 m | 2.3022 Nm | ||
m | 0.9000 kg | 11.317 N | |||
g | 9.81 m/s | w | 0.0200 m | 44.692% | |
H | 0.500 m | s | 0.2527 m | 99.992% | |
c | 0.010 Ns/m | 0.1300 m | D | 0.5744 m | |
0.400 Nms | 34.1288 m/s | ||||
4000 N/m | |||||
0.0 |
Spring Design | Other | ||
---|---|---|---|
Linear non-preloaded | D | ||
Linear preloaded (zero stiffness) | D | ||
Linear preloaded | D |
Spring Design | Damping | -Parameters | Max. Deceleration | Energy Storage Efficiency | |||
---|---|---|---|---|---|---|---|
[m] | [ms] | [-] | [-] | [-] | |||
Linear no-preload | Yes | ||||||
Linear prel. () | Yes | ||||||
Linear preloaded | Yes | ||||||
VRD system (ref.) | Yes | ||||||
Linear no-preload | No | ||||||
Linear prel. () | No | ||||||
Linear preloaded | No | ||||||
VRD system (ref.) | No | ||||||
VRD () | Yes | ||||||
VRD () | Yes | ||||||
VRD () | Yes | ||||||
Theoretical best | No | — | — | — | — |
Parameter | Min | Max | Increment |
---|---|---|---|
m (kg) | 0.47 | 1.88 | 0.0047 |
g (ms) | 0.98 | 11.77 | 0.1090 |
(N/m) | 2000.00 | 8000.00 | 60.6061 |
(-) | 0.00 | 0.60 | 0.0061 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seriani, S. A New Mechanism for Soft Landing in Robotic Space Exploration. Robotics 2019, 8, 103. https://doi.org/10.3390/robotics8040103
Seriani S. A New Mechanism for Soft Landing in Robotic Space Exploration. Robotics. 2019; 8(4):103. https://doi.org/10.3390/robotics8040103
Chicago/Turabian StyleSeriani, Stefano. 2019. "A New Mechanism for Soft Landing in Robotic Space Exploration" Robotics 8, no. 4: 103. https://doi.org/10.3390/robotics8040103
APA StyleSeriani, S. (2019). A New Mechanism for Soft Landing in Robotic Space Exploration. Robotics, 8(4), 103. https://doi.org/10.3390/robotics8040103