Variation in Terpene Profiles of Thymus vulgaris in Water Deficit Stress Response
<p>The effects of drought stress on the physiological parameters in the sensitive (right) and tolerant (left) thyme plants: (<b>a</b>) the leaf water potential (MPa); (<b>b</b>) water content (%); (<b>c</b>) shoot dry weight (g); (<b>d</b>) net photosynthetic rate (µmol m<sup>−</sup><sup>2</sup> s<sup>−1</sup>); (<b>e</b>) stomatal conductance (mmol m<sup>2</sup> s<sup>−1</sup>). <sup>*</sup> <span class="html-italic">p</span> < 0.05 vs. day 0 of Droughted group; <sup>**</sup> <span class="html-italic">p</span> < 0.01 vs. day 0 of Droughted group, <sup>***</sup> <span class="html-italic">p</span> < 0.001 vs. day 0 of Droughted group, <sup>##</sup> <span class="html-italic">p</span> < 0.01 vs. day 0 of Watered group; <sup>###</sup> <span class="html-italic">p</span> < 0.001 vs. day 0 of Watered group; <sup>&</sup> <span class="html-italic">p</span> < 0.05 Droughted vs. Watered group; <sup>&&</sup> <span class="html-italic">p</span> < 0.01 Droughted vs. Watered group; <sup>&&&</sup> <span class="html-italic">p</span> < 0.001 Droughted vs. Watered group. Data are expressed as the mean ± S.E.M. Two-way ANOVA followed by the Sidak’s multiple comparisons test was executed.</p> "> Figure 2
<p>Profile of the changes of the volatile compounds in the leaves of the sensitive thyme plants during drought stress. Following water withholding, the leaves were harvested and analysis of non-polar extracts was carried out by direct infusion Fourier transform ion cyclotron resonance (DIFT-ICR) mass spectrometry. Vertical axis is the relative value of the compounds and horizontal axis the day of stress exposure. (<b>a</b>) β-myrcene; (<b>b</b>) β-pinene; (<b>c</b>) α-thujene; (<b>d</b>) O-cymene; (<b>e</b>) ocimene; (<b>f</b>) γ-terpinene; (<b>g</b>) α-phellandrene; (<b>h</b>) thymolo; (<b>i</b>) β-caryophyllene; (<b>j</b>) germacrene-d; (<b>k</b>) α-cubebene. <sup>*</sup> <span class="html-italic">p</span> < 0.05 vs. day 0 of Droughted group; <sup>**</sup> <span class="html-italic">p</span> < 0.01 vs. day 0 of Droughted group, <sup>***</sup> <span class="html-italic">p <</span> 0.001 vs. day 0 of Droughted group; <sup>&</sup> <span class="html-italic">p <</span> 0.05 Droughted vs. Watered group; <sup>&&</sup> <span class="html-italic">p <</span> 0.01 Droughted vs. Watered group; <sup>&&&</sup> <span class="html-italic">p <</span> 0.001 Droughted vs. Watered group. Data are expressed as the mean ± S.E.M. Two-way ANOVA followed by the Sidak’s multiple comparisons test was executed.</p> "> Figure 3
<p>Profile of the changes of the volatile compounds in the leaves of the tolerant thyme plants during drought stress. Following water withholding, the leaves were harvested and analysis of non-polar extracts was carried out by direct infusion Fourier transform ion cyclotron resonance (DIFT-ICR) mass spectrometry. Vertical axis is the relative value of the compounds and horizontal axis the day of stress exposure. (<b>a</b>) β-pinene; (<b>b</b>) α-phellandrene; (<b>c</b>) ocimene; (<b>d</b>) α-cubebene; (<b>e</b>) thymolo; (<b>f</b>) α-thujene; (<b>g</b>) γ-terpinene; (<b>h</b>) β-caryophyllene; (<b>i</b>) O-cymene; (<b>j</b>) germacrene-d; (<b>k</b>) β-myrcene. <sup>*</sup> <span class="html-italic">p</span> < 0.05 vs. day 0 of Droughted group; <sup>**</sup> <span class="html-italic">p</span> < 0.01 vs. day 0 of Droughted group, <sup>***</sup> <span class="html-italic">p</span> < 0.001 vs. day 0 of Droughted group, <sup>##</sup> p < 0.01 vs. day 0 of Watered group; <sup>###</sup> <span class="html-italic">p</span> < 0.001 vs. day 0 of Watered group; <sup>&</sup> <span class="html-italic">p</span> < 0.05 Droughted vs. Watered group; <sup>&&</sup> <span class="html-italic">p</span> < 0.01 Droughted vs. Watered group; <sup>&&&</sup> <span class="html-italic">p</span> < 0.001 Droughted vs. Watered group. Data are expressed as the mean ± S.E.M. Two-way ANOVA followed by the Sidak’s multiple comparisons test was executed.</p> "> Figure 4
<p>Principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) score plots for the volatile compounds in the tolerant and sensitive thyme leaves under control and drought stress conditions. Score plots for the tolerant watered (TW), tolerant drought-stressed (TD), sensitive watered (SW) and sensitive drought-stressed (SD) leaves after four (<b>a</b>), 8 (<b>b</b>) and 12 (<b>c</b>) days of water limitation. (<b>d</b>) The total plots (days 0–14). The numbers present the corresponding sample numbers.</p> "> Figure 5
<p>The hierarchical clustering and heat map of the data. The peaks were divided into given groups (TD, tolerant drought-stressed; TW, tolerant watered; SD, sensitive drought-stressed; SW, sensitive watered) after four (<b>a</b>), 8 (<b>b</b>) and 12 (<b>c</b>) days of water limitation. (<b>d</b>) The total heat map (days 0–14). The numbers represent the corresponding sample numbers and different colors are indicative of the relative abundance of each volatile in different condition.</p> "> Figure 5 Cont.
<p>The hierarchical clustering and heat map of the data. The peaks were divided into given groups (TD, tolerant drought-stressed; TW, tolerant watered; SD, sensitive drought-stressed; SW, sensitive watered) after four (<b>a</b>), 8 (<b>b</b>) and 12 (<b>c</b>) days of water limitation. (<b>d</b>) The total heat map (days 0–14). The numbers represent the corresponding sample numbers and different colors are indicative of the relative abundance of each volatile in different condition.</p> "> Figure 6
<p>The suggested adaptation mechanisms to drought stress in thyme plants. (1) Pathway illustrates carbon diversion from photosynthesis to VOCs and (2) depicts ROS scavenging by non-enzymatic antioxidants.</p> "> Figure 7
<p>Experimental design to explore the volatile composition alterations over drought stress period using combined physiological and non-targeted volatilome profiling.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physiological Parameters Affected by Long-Term Drought Stress
2.2. Non-Targeted Volatile Profiling of Thyme Extracts Using GC/MS
2.3. Integrative Analysis of Volatile Compounds in the Tolerant and Sensitive Thyme Plants
3. Materials and Methods
3.1. Plant Material and Morpho-Physiological Parameters
3.2. Sampling and Extraction Procedure
3.3. GC/MS Analysis of Volatile Compounds
3.4. Volatile Identification and Data Processing
3.5. Chemometrics Analyses and Data Processing
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reidel, R.V.B.; Cioni, P.L.; Pistelli, L. Volatile emission of different plant parts and fruit development from Italian cherry plums (Prunus cerasifera and P. cerasifera ‘Pissardii’). Biochem. Syst. Ecol. 2017, 75, 10–17. [Google Scholar] [CrossRef]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef]
- Premoli, M.; Aria, F.; Bonini, S.A.; Maccarinelli, G.; Gianoncelli, A.; Pina, S.D.; Tambaro, S.; Memo, M.; Mastinu, A. Cannabidiol: Recent advances and new insights for neuropsychiatric disorders treatment. Life Sci. 2019, 224, 120–127. [Google Scholar] [CrossRef]
- Mastinu, A.; Bonini, S.A.; Rungratanawanich, W.; Aria, F.; Marziano, M.; Maccarinelli, G.; Abate, G.; Premoli, M.; Memo, M.; Uberti, D. Gamma-oryzanol Prevents LPS-induced Brain Inflammation and Cognitive Impairment in Adult Mice. Nutrients 2019. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Premoli, M.; Aria, F.; Bonini, S.A.; Maccarinelli, G.; Gianoncelli, A.; Memo, M.; Mastinu, A. Cannabimimetic plants: Are they new cannabinoidergic modulators? Planta 2019, 249, 1681–1694. [Google Scholar] [CrossRef]
- Mastinu, A.; Ribaudo, G.; Ongaro, A.; Bonini, S.A.; Memo, M.; Gianoncelli, A. Critical Review on the Chemical Aspects of Cannabidiol (CBD) and Harmonization of Computational Bioactivity Data. Curr. Med. Chem. 2020. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Loreto, F.; Schnitzler, J.-P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010, 15, 154–166. [Google Scholar] [CrossRef]
- Rasmann, S.; De Vos, M.; Casteel, C.L.; Tian, D.; Halitschke, R.; Sun, J.Y.; Agrawal, A.A.; Felton, G.W.; Jander, G. Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol. 2012, 158, 854–863. [Google Scholar] [CrossRef] [Green Version]
- Sacchettini, J.C.; Poulter, C.D. Biochemistry — Creating isoprenoid diversity. Science 1997, 277, 1788–1789. [Google Scholar] [CrossRef]
- Golmakani, M.-T.; Rezaei, K. Comparison of microwave-assisted hydrodistillation withthe traditional hydrodistillation method in the extractionof essential oils from Thymus vulgaris L. Food Chem. 2008, 109, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Gedikoğlu, A.; Sökmen, M.; Çivit, A. Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci. Nutr. 2019, 7, 1704–1714. [Google Scholar]
- Assiri, A.M.; Elbanna, K.; Abulreesh, H.H.; Ramadan, M.F. Bioactive compounds of cold-pressed thyme (Thymus vulgaris) oil with antioxidant and antimicrobial properties. J. Oleo Sci. 2016, 65, 629–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradi, P.; Mahdavi, A.; Khoshkam, M.; Iriti, M. Lipidomics unravels the role of leaf lipids in thyme plant response to drought stress. Int. J. Mol. Sci. 2017, 18, 2067. [Google Scholar] [CrossRef] [Green Version]
- Holopainen, J.K.; Gershenzon, J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 2010, 15, 176–184. [Google Scholar] [CrossRef]
- Tingey, D.T.; Manning, M.; Grothaus, L.C.; Burns, W.F. Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol. 1980, 65, 797–801. [Google Scholar] [CrossRef] [Green Version]
- Schuh, G.; Heiden, A.; Hoffmann, T.; Kahl, J.; Rockel, P.; Rudolph, J.; Wildt, J. Emissions of volatile organic compounds from sunflower and beech: Dependence on temperature and light intensity. J. Atmos. Chem. 1997, 27, 291–318. [Google Scholar] [CrossRef]
- Moradi, P.; Ford-Lloyd, B.; Pritchard, J. Metabolomic approach reveals the biochemical mechanisms underlying drought stress tolerance in thyme. Anal. Biochem. 2017. [Google Scholar] [CrossRef] [Green Version]
- Ebel, R.C.; Mattheis, J.P.; Buchanan, D.A. Drought stress of apple trees alters leaf emissions of volatile compounds. Physiol. Plant. 1995, 93, 709–712. [Google Scholar] [CrossRef]
- Vallat, A.; Gu, H.; Dorn, S. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry 2005, 66, 1540–1550. [Google Scholar] [CrossRef]
- Loreto, F.; Delfine, S. Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol. 2000, 123, 1605–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiden, A.; Hoffmann, T.; Kahl, J.; Kley, D.; Klockow, D.; Langebartels, C.; Mehlhorn, H.; Sandermann Jr, H.; Schraudner, M.; Schuh, G. Emission of volatile organic compounds from ozone-exposed plants. Ecol. Appl. 1999, 9, 1160–1167. [Google Scholar] [CrossRef]
- Sharkey, T.D.; Yeh, S. Isoprene emission from plants. Annu. Rev. Plant Biol. 2001, 52, 407–436. [Google Scholar] [CrossRef] [PubMed]
- Loreto, F.; Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Frattoni, M.; Tricoli, D. Influence of Environmental Factors and Air Composition on the Emission of [alpha]-Pinene from Quercus ilex Leaves. Plant Physiol. 1996, 110, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Duhl, T.; Helmig, D.; Guenther, A. Sesquiterpene emissions from vegetation: A review. Biogeosciences 2008, 5, 761–777. [Google Scholar] [CrossRef] [Green Version]
- Teuber, M.; Zimmer, I.; Kreuzwieser, J.; Ache, P.; Polle, A.; Rennenberg, H.; Schnitzler, J.P. VOC emissions of Grey poplar leaves as affected by salt stress and different N sources. Plant Biol. 2008, 10, 86–96. [Google Scholar] [CrossRef]
- Sharkey, T.D.; Wiberley, A.E.; Donohue, A.R. Isoprene emission from plants: Why and how. Ann. Bot. 2008, 101, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Jordan, M.J.; Martinez, R.M.; Cases, M.A.; Sotomayor, J.A. Watering level effect on Thymus hyemalis Lange essential oil yield and composition. J. Agric. Food Chem. 2003, 51, 5420–5427. [Google Scholar] [CrossRef]
- Sotomayor, J.A.; Martinez, R.M.; Garcia, A.J.; Jordan, M.J. Thymus zygis subsp gracilis: Watering level effect on phytomass production and essential oil quality. J. Agric. Food Chem. 2004, 52, 5418–5424. [Google Scholar] [CrossRef]
- Blande, J.D.; Holopainen, J.K.; Niinemets, Ü. Plant volatiles in polluted atmospheres: Stress responses and signal degradation. Plant Cell Environ. 2014, 37, 1892–1904. [Google Scholar] [CrossRef] [Green Version]
- Loreto, F.; Dicke, M.; Schnitzler, J.P.; Turlings, T.C.J. Plant volatiles and the environment. Plant Cell Environ. 2014, 37, 1905–1908. [Google Scholar] [CrossRef] [PubMed]
- Quan, W.; Ding, G. Root tip structure and volatile organic compound responses to drought stress in Masson pine (Pinus massoniana Lamb.). Acta Physiol. Plant 2017. [Google Scholar] [CrossRef]
- Song, L.; Prince, S.; Valliyodan, B.; Joshi, T.; dos Santos, J.V.M.; Wang, J.; Lin, L.; Wan, J.; Wang, Y.; Xu, D.; et al. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions. BMC Genomics 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verslues, P.E.; Sharp, R.E. Proline Accumulation in Maize (Zea mays L.) Primary Roots at Low Water Potentials. II. Metabolic Source of Increased Proline Deposition in the Elongation Zone. Plant Physiol. 1999, 119, 1349–1360. [Google Scholar] [CrossRef] [Green Version]
- Liberato, M.A.R.; Gonçalves, J.F.d.C.; Chevreuil, L.R.; Junior, N.; da Rocha, A.; Fernandes, A.V.; Santos Junior, U.M.d. Leaf water potential, gas exchange and chlorophyll a fluorescence in acariquara seedlings (Minquartia guianensis Aubl.) under water stress and recovery. Braz. J. Plant Physiol. 2006, 18, 315–323. [Google Scholar] [CrossRef]
- Medrano, H.; Escalona, J.M.; Bota, J.; Gulías, J.; Flexas, J. Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Ann. Bot. 2002, 89, 895–905. [Google Scholar] [CrossRef]
- Chaves, M.M.; Costa, J.M.; Saibo, N.J.M. Recent advances in photosynthesis under drought and salinity. Adv. Bot. Res. 2011. [Google Scholar] [CrossRef]
- Blée, E. Impact of phyto-oxylipins in plant defense. Trends Plant Sci. 2002, 7, 315–322. [Google Scholar] [CrossRef]
- Catola, S.; Marino, G.; Emiliani, G.; Huseynova, T.; Musayev, M.; Akparov, Z.; Maserti, B.E. Physiological and metabolomic analysis of Punica granatum (L.) under drought stress. Planta 2016, 243, 441–449. [Google Scholar] [CrossRef]
- Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discriminant analysis–a marriage of convenience or a shotgun wedding. Anal. Chim. Acta 2015, 879, 10–23. [Google Scholar] [CrossRef]
- Goodacre, R.; Shann, B.; Gilbert, R.J.; Timmins, E.M.; McGovern, A.C.; Alsberg, B.K.; Kell, D.B.; Logan, N.A. Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal. Chem. 2000, 72, 119–127. [Google Scholar] [CrossRef]
- Key, M. A tutorial in displaying mass spectrometry-based proteomic data using heat maps. BMC Bioinform. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, J.-Y.; Jung, H.-J.; Moon, M.H.; Chung, B.C.; Choi, M.H. Heat-map visualization of gas chromatography-mass spectrometry based quantitative signatures on steroid metabolism. J. Am. Soc. Mass Spectrom. 2011, 20, 1626–1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradi, P.; Ford-Lloyd, B.; Pritchard, J. Plant-water responses of different medicinal plant thyme (Thymus spp.) species to drought stress condition. Aust. J. Crop Sci. 2014, 8, 666. [Google Scholar]
- Moradi, P.; Ford-Lloyd, B.; Pritchard, J. An evaluation of germination efficiency in a range of genotypes of Thymus species differing in susceptibility to drought. Int. J. Biosci. 2014, 5, 134–145. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2007. [Google Scholar]
- Kant, M.R.; Ament, K.; Sabelis, M.W.; Haring, M.A.; Schuurink, R.C. Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol. 2004, 135, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Lenka, S.K.; Katiyar, A.; Chinnusamy, V.; Bansal, K.C. Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol. J. 2011, 9, 315–327. [Google Scholar] [CrossRef]
- Cho, S.-M.; Park, J.-Y.; Han, S.-H.; Anderson, A.J.; Yang, K.-Y.; Gardener, B.M.; Kim, Y.-C. Identification and transcriptional analysis of priming genes in Arabidopsis thaliana induced by root colonization with Pseudomonas chlororaphis O6. Plant Pathol. J. 2011, 27, 272–279. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahdavi, A.; Moradi, P.; Mastinu, A. Variation in Terpene Profiles of Thymus vulgaris in Water Deficit Stress Response. Molecules 2020, 25, 1091. https://doi.org/10.3390/molecules25051091
Mahdavi A, Moradi P, Mastinu A. Variation in Terpene Profiles of Thymus vulgaris in Water Deficit Stress Response. Molecules. 2020; 25(5):1091. https://doi.org/10.3390/molecules25051091
Chicago/Turabian StyleMahdavi, Atiyeh, Parviz Moradi, and Andrea Mastinu. 2020. "Variation in Terpene Profiles of Thymus vulgaris in Water Deficit Stress Response" Molecules 25, no. 5: 1091. https://doi.org/10.3390/molecules25051091
APA StyleMahdavi, A., Moradi, P., & Mastinu, A. (2020). Variation in Terpene Profiles of Thymus vulgaris in Water Deficit Stress Response. Molecules, 25(5), 1091. https://doi.org/10.3390/molecules25051091