Deep Learning and Handcrafted Features for Virus Image Classification
<p>El Merabet et al. [<a href="#B12-jimaging-06-00143" class="html-bibr">12</a>] representation of Attractive Repulsive Center Symmetric Local Binary Pattern: (<b>a</b>) Example of possible triplets center symmetric; (<b>b</b>) Example of various methods patterns.</p> "> Figure 2
<p>Example of magnitude with Gaussian standard deviation σ = 1 (Lassa Virus).</p> "> Figure 3
<p>Kaplan et al. [<a href="#B14-jimaging-06-00143" class="html-bibr">14</a>] proposed method. (<b>a</b>) Angle based neighbors. (<b>b</b>) Example of application on a TEM image of the influenza virus with various angles.</p> ">
Abstract
:1. Introduction
2. Related Work
3. The Proposed Method
3.1. Method Description and SVMs
3.2. Texture Descriptors Tested in This Paper
3.2.1. Local Binary Pattern (LBP)
3.2.2. Discrete Local Binary Pattern (DLBP)
3.2.3. Sorted Consecutive Local Binary Pattern (scLBP)
3.2.4. Attractive Repulsive Center Symmetric Local Binary Pattern (ARCSLBP)
3.2.5. Sigma Attractive Repulsive Center Symmetric Local Binary Pattern (sigmaARCSLBP)
3.2.6. Alpha Local Binary Pattern (alphaLBP)
3.2.7. Heterogeneous Auto-Similarities of Characteristics (HASC)
3.2.8. Local Concave Micro Structure Pattern (LCvMSP)
3.2.9. JET Texton Learning
3.2.10. Adaptive Hybrid Patterns (AHP)
3.3. Texture Descriptors Proposed in the Literature
3.3.1. Local Ternary Pattern (LTP)
3.3.2. Local Phase Quantization (LPQ)
3.3.3. Rotation Invariant Co-Occurrence among Adjacent LBP
3.3.4. Local Binary Pattern Histogram Fourier
3.3.5. Dense LBP (DLBP)
3.3.6. Multi Quinary Coding (MQC)
3.3.7. Edge (ED)
3.3.8. Difference of Gaussian (DoG)
3.3.9. Bag of Feature (BoF)
3.4. Deep Learning Approach
4. Results
- -
- NewSet consists of the sum rule among the methods reported in Table 1. It is interesting to note that the fusion strongly outperforms the stand-alone approaches.
- -
- OLD is the previous set proposed in Santos et al. [4].
- -
- HandC is the fusion by sum rule among the handcrafted methods of NewSet and OLD. This ensemble does not boost the performance of NewSet significantly.
- -
- DeepL is the SVM trained using the last average pooling layer as input. Notice that using DenseNet201 as classifier, a lower 78.93% accuracy is obtained.
- -
- HandC+DeepL is the sum rule between HandC and DeepL. Before the fusion, the scores of HandC and DeepL are normalized to mean 0 and standard deviation 1. This is because the number of classifiers in HandC and DeepL are different.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matuszewski, B.; Shark, L.-K. Hierarchical Iterative Bayesian Approach to Automatic Recognition of Biological Viruses in Electron Microscope Images. In Proceedings of the 2001 International Conference on Image Processing (Cat.No.01CH37205), Thessaloniki, Greece, 7–10 October 2001. [Google Scholar] [CrossRef]
- Kylberg, G.; Uppström, M.; Sintorn, I.-M. Virus Texture Analysis Using Local Binary Patterns and Radial Density Profiles. In Proceedings of the 16th Iberoamerican Congress conference on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Pucón, Chile, 15–18 November 2011; pp. 573–580. [Google Scholar] [CrossRef] [Green Version]
- Proença, M.D.C.; Nunes, J.F.; De Matos, A.P.A. Texture Indicators for Segmentation of Polyomavirus Particles in Transmission Electron Microscopy Images. Microsc. Microanal. 2013, 19, 1170–1182. [Google Scholar] [CrossRef]
- Dos Santos, F.L.C.; Paci, M.; Nanni, L.; Brahnam, S.; Hyttinen, J. Computer Vision for Virus Image Classification. Biosyst. Eng. 2015, 138, 11–22. [Google Scholar] [CrossRef]
- Nanni, L.; Paci, M.; Brahnam, S.; Ghidoni, S.; Menegatti, E. Virus image classification using different texture descriptors. In Proceedings of the 14th International Conference on Bioinformatics and Computational Biology (BIOCOMP’13), Las Vegas, NV, USA, 22–25 July 2013. [Google Scholar]
- Wen, Z.; Li, Z.; Peng, Y.; Ying, S. Virus Image Classification Using Multi-Scale Completed Local Binary Pattern Features Extracted from Filtered Images by Multi-Scale Principal Component Analysis. Pattern Recognit. Lett. 2016, 79, 25–30. [Google Scholar] [CrossRef]
- De Geus, A.R.; Backes, A.; Souza, J. Variability Evaluation of CNNs Using Cross-Validation on Viruses Images. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Valletta, Malta, 27–29 February 2020. [Google Scholar] [CrossRef]
- Backes, A.R.; Junior, J.J.D.M.S. Virus Classification by Using a Fusion of Texture Analysis Methods. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 3–5 June 2020. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. 1998, 13, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T. Discriminative Local Binary Pattern for Image Feature Extraction. In Computer Vision—ECCV 2020; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2015; Volume 9256, pp. 594–605. [Google Scholar]
- Ryu, J.; Hong, S.; Yang, H.S. Sorted Consecutive Local Binary Pattern for Texture Classification. IEEE Trans. Image Process. 2015, 24, 2254–2265. [Google Scholar] [CrossRef] [PubMed]
- El Merabet, Y.; Ruichek, Y.; El Idrissi, A. Attractive-and-repulsive center-symmetric local binary patterns for texture classification. Eng. Appl. Artif. Intell. 2019, 78, 158–172. [Google Scholar] [CrossRef]
- Alpaslan, N.; Hanbay, K. Multi-Resolution Intrinsic Texture Geometry-Based Local Binary Pattern for Texture Classification. IEEE Access 2020, 8, 54415–54430. [Google Scholar] [CrossRef]
- Kaplan, K.; Kaya, Y.; Kuncan, M.; Ertunc, H.M. Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Med. Hypotheses 2020, 139, 109696. [Google Scholar] [CrossRef] [PubMed]
- Biagio, M.S. Heterogeneous auto-similarities of characteristics (hasc): Exploiting relational information for classification. In Proceedings of the IEEE Computer Vision (ICCV13), Sydney, Australia, 1–8 December 2013; pp. 809–816. [Google Scholar]
- El Merabet, Y.; Ruichek, Y. Local Concave-and-Convex Micro-Structure Patterns for texture classification. Pattern Recognit. 2018, 76, 303–322. [Google Scholar] [CrossRef]
- Alpaslan, N.; Hanbay, K. Multi-Scale Shape Index-Based Local Binary Patterns for Texture Classification. IEEE Signal Process. Lett. 2020, 27, 660–664. [Google Scholar] [CrossRef]
- Roy, S.K.; Ghosh, D.K.; Dubey, S.R.; Bhattacharyya, S.; Chaudhuri, B.B. Unconstrained texture classification using efficient jet texton learning. Appl. Soft Comput. 2020, 86, 105910. [Google Scholar] [CrossRef]
- Zhu, Z.; You, X.; Chen, C.P.; Tao, D.; Ou, W.; Jiang, X.; Zou, J. An adaptive hybrid pattern for noise-robust texture analysis. Pattern Recognit. 2015, 48, 2592–2608. [Google Scholar] [CrossRef]
- Tan, X.; Triggs, B. Enhanced Local Texture Feature Sets for Face Recognition under Difficult Lighting Conditions. IEEE Trans. Image Process. 2010, 19, 1635–1650. [Google Scholar] [PubMed] [Green Version]
- Ojansivu, V.; Heikkilä, J. Blur Insensitive Texture Classification Using Local Phase Quantization. In Image and Signal Processing. ICISP 2008. Lecture Notes in Computer Science; Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5099. [Google Scholar] [CrossRef] [Green Version]
- Nosaka, R.; Ohkawa, Y.; Fukui, K. Feature Extraction Based on Co-occurrence of Adjacent Local Binary Patterns. In Proceedings of the 5th Pacific Rim Conference on Advances in Image and Video Technology—Volume Part II, Gwangju, Korea, 20–23 November 2011; pp. 82–91. [Google Scholar]
- Ahonen, T.; Matas, J.; Chu, H.; Pietikäinen, M. Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features. In Proceedings of the 16th Scandinavian Conference, SCIA 2009, Oslo, Norway, 15–18 June 2009; pp. 61–70. [Google Scholar]
- Ylioinas, J.; Hadid, A.; Guo, Y.; Pietikäinen, M. Efficient Image Appearance Description Using Dense Sampling Based Local Binary Patterns. In Computer Vision—ACCV 2012 Lecture Notes in Computer Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2013; Volume 7726, pp. 375–388. [Google Scholar]
- Paci, M.; Nanni, L.; Lahti, A.; Aalto-Setälä, K.; Hyttinen, J.; Severi, S. Non-Binary Coding for Texture Descriptors in Sub-Cellular and Stem Cell Image Classification. Curr. Bioinform. 2013, 8, 208–219. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 1–9. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.-J.; Liu, Z.-H.; Zong, Y.-C.; Li, B. Latent Local Feature Extraction for Low-Resolution Virus Image Classification. J. Oper. Res. Soc. China 2018, 8, 117–132. [Google Scholar] [CrossRef]
JET | scLBP | AHP | HASC | Gradient + ARCSLBP | ARCSLBP | AlphaLBP | SigmaARCSLBP | DLBP | LCvMSP |
---|---|---|---|---|---|---|---|---|---|
58.93 | 69.47 | 76.60 | 68.40 | 61.00 | 79.93 | 64.13 | 75.40 | 70.33 | 64.67 |
NewSet | OLD | HandC | DeepL | HandC + DeepL |
---|---|---|---|---|
85.40 | 85.67 | 86.13 | 86.40 | 89.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nanni, L.; De Luca, E.; Facin, M.L.; Maguolo, G. Deep Learning and Handcrafted Features for Virus Image Classification. J. Imaging 2020, 6, 143. https://doi.org/10.3390/jimaging6120143
Nanni L, De Luca E, Facin ML, Maguolo G. Deep Learning and Handcrafted Features for Virus Image Classification. Journal of Imaging. 2020; 6(12):143. https://doi.org/10.3390/jimaging6120143
Chicago/Turabian StyleNanni, Loris, Eugenio De Luca, Marco Ludovico Facin, and Gianluca Maguolo. 2020. "Deep Learning and Handcrafted Features for Virus Image Classification" Journal of Imaging 6, no. 12: 143. https://doi.org/10.3390/jimaging6120143
APA StyleNanni, L., De Luca, E., Facin, M. L., & Maguolo, G. (2020). Deep Learning and Handcrafted Features for Virus Image Classification. Journal of Imaging, 6(12), 143. https://doi.org/10.3390/jimaging6120143