Continuous Monitoring of the Surface Water Area in the Yellow River Basin during 1986–2019 Using Available Landsat Imagery and the Google Earth Engine
<p>Spatial distribution of the meteorological and gauging stations in the YRB. The gauge stations are TNH, QTX, TDG, LM, HYK and LJ from upstream to downstream, respectively.</p> "> Figure 2
<p>Spatial distribution of the frequency of clear Landsat observations in the YRB from 1986 to 2019.</p> "> Figure 3
<p>Interannual variation in the area ratio of the frequency with different levels of clear Landsat observations in the YRB.</p> "> Figure 4
<p>Variations in the WIFs of different types of typical water bodies in the YRB during 1986–2019.</p> "> Figure 5
<p>Validation of the accuracy of the water body classification in 2019 using different WIF thresholds.</p> "> Figure 6
<p>The spatial distribution of the surface water bodies derived from the multi-year average WIF during 1986–2019.</p> "> Figure 7
<p>The areas of the different types of surface water bodies derived from the multi-year average WIF during 1986–2019 in the YRB.</p> "> Figure 8
<p>Different types of water bodies in each sub-basin derived from the multi-year average WIF during 1986–2019. Panels (<b>a</b>–<b>d</b>) are for the seasonal, permanent, maximum, and annual average water bodies, respectively.</p> "> Figure 9
<p>Continuous dynamic changes in the different types of water bodies—including the seasonal, permanent, maximum, and annual average water bodies—in the entire YRB during 1986–2019.</p> "> Figure 10
<p>Interannual rates of change for the different types of water bodies in six sub-regions from the upper to the lower reaches in the YRB during 1986–2019.</p> "> Figure 11
<p>Changes in the different types of water bodies in each sub-basin in the YRB during 1986–2019. Panels (<b>a</b>–<b>d</b>) are for the permanent, seasonal, maximum, and annual average SWAs, respectively.</p> "> Figure 12
<p>The spatial pattern of the conversion of surface water bodies from 1986 to 2019 in the YRB.</p> "> Figure 13
<p>The SWA of the different surface water body conversion types from 1986 to 2019 in each sub-region in the YRB.</p> "> Figure 14
<p>The different water body conversion types from 1986 to 2019 in the YRB. Panels (<b>a</b>–<b>f</b>) are for non-water to permanent, non-water to seasonal, seasonal to non-water, seasonal to permanent, permanent to non-water, and permanent to seasonal conversions, respectively.</p> "> Figure 15
<p>(<b>a</b>) Interannual variations in the environmental factors, and (<b>b</b>) the correlation coefficients between the environmental factors and the different types of water bodies in the entire YRB. ** denotes <span class="html-italic">p</span> < 0.01; * denotes <span class="html-italic">p</span> < 0.05.</p> "> Figure 16
<p>Correlation coefficients between the SWA and the Pre (<b>a</b>), Temp (<b>b</b>), LAI (<b>c</b>), and SM (<b>d</b>) for the permanent water bodies in each sub-basin.</p> "> Figure 17
<p>Correlation coefficients between the SWA and the Pre (<b>a</b>), Temp (<b>b</b>), LAI (<b>c</b>), and SM (<b>d</b>) for the seasonal water bodies in each sub-basin.</p> "> Figure 18
<p>(<b>a</b>) Relationship between ET and LAI in the entire YRB, and (<b>b</b>) the water body area percentage in the main river channel region and the sub-basins for the permanent and seasonal water bodies.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Processing
2.2. Surface Water Body Mapping Algorithm
2.3. Accuracy Assessment
2.4. Linear Slope Calculation
2.5. Partial Correlation Analysis
3. Results
3.1. Surface Water Body Classification Results and Accuracy Validation
3.2. Spatial Distribution of the Surface Water Bodies in the YRB
3.3. Changes in the SWA in the YRB from 1986 to 2019
3.4. Conversions of Different Types of Surface Water Bodies
3.5. Relationship between SWA and Environmental Factors
4. Discussion
4.1. Potential Influence Mechanism of the Environmental Factors on the SWA
4.2. Uncertainties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amprako, J.L. The United Nations World Water Development Report 2015: Water for a Sustainable World. Future Food J. Food Agric. Soc. 2016, 4, 64–65. [Google Scholar]
- Costanza, R.; d′Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O′Neill, R.V.; Paruelo, J.; et al. The value of the world′s ecosystem services and natural capital. Nature 1997, 387, 253. [Google Scholar] [CrossRef]
- Wood, E.F.; Roundy, J.K.; Troy, T.J.; van Beek, L.P.H.; Bierkens, M.F.P.; Blyth, E.; de Roo, A.; Döll, P.; Ek, M.; Famiglietti, J.; et al. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth′s terrestrial water. Water Resour. Res. 2011, 47, W05301. [Google Scholar] [CrossRef]
- Shevyrnogov, A.P.; Kartushinsky, A.V.; Vysotskaya, G.S. Application of Satellite Data for Investigation of Dynamic Processes in Inland Water Bodies: Lake Shira (Khakasia, Siberia), A Case Study. Aquat. Ecol. 2002, 36, 153–164. [Google Scholar] [CrossRef]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The Shuttle Radar Topography Mission—A New Class of Digital Elevation Models Acquired by Spaceborne Radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Hall, J.W.; Grey, D.; Garrick, D.; Fung, F.; Brown, C.; Dadson, S.J.; Sadoff, C.W. Coping with the curse of freshwater variability. Science 2014, 346, 429–430. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 2007, 10, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Carroll, M.L.; Townshend, J.R.G.; DiMiceli, C.M.; Loboda, T.; Sohlberg, R.A. Shrinking Lakes of the Arctic: Spatial Relationships and Trajectory of Change. Geophys. Res. Lett. 2011, 38, L20406. [Google Scholar] [CrossRef] [Green Version]
- Craglia, M.; de Bie, K.; Jackson, D.; Pesaresi, M.; Remetey-Fülöpp, G.; Wang, C.; Annoni, A.; Bian, L.; Campbell, F.; Ehlers, M. Digital Earth 2020: Towards the Vision for the next Decade. Int. J. Digit. Earth 2012, 5, 4–21. [Google Scholar] [CrossRef]
- Jianbo, L.; Changda, D. The application of TM image in reservoir situation monitoring. Natl. Remote Sens. Bull. 1996, 1, 54–58. [Google Scholar]
- Bi, H.Y.; Wang, S.Y.; Zeng, J.Y.; Zhao, Y.; Wang, H.; Yin, H. Comparison and analysis of several common water extraction methods based on TM image. Remote Sens. Inf. 2012, 27, 77–82. [Google Scholar]
- Jiaju, L.; Shihong, L. Improvement of the techniques for distinguishing water bodies from TM data. J. Remote Sens. 1992, 1, 17–23. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. A study on information extraction of water body with the modified normalized difference water index (MNDWI). J. Remote Sens. 2005, 9, 589–595. [Google Scholar]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotelysensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Lei, J.I.; Zhang, L.I.; Wylie, B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar]
- Verpoorter, C.; Kutser, T.; Tranvik, L. Automated Mapping of Water Bodies Using Landsat Multispectral Data. Limnol. Oceanogr. Methods 2015, 10, 1037–1050. [Google Scholar] [CrossRef]
- Santoro, M.; Wegmueller, U.; Lamarche, C.; Bontemps, S.; Defoumy, P.; Arino, O. Strengths and weaknesses of multi-year Envisat ASAR backscatter measurements to map permanent open water bodies at global scale. Remote Sens. Environ. 2015, 171, 185–201. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.H.; Dong, J.W.; Menarguez, M.A.; Xiao, X.M.; QIN, Y.W.; Doughty, R.B.; Hooker, K.V.; Hambright, K.D. Continued decrease of open surface water body area in Oklahoma during 1984–2015. Sci. Total Environ. 2017, 595, 451–460. [Google Scholar] [CrossRef]
- Zou, Z.H.; Xiao, X.M.; Dong, J.W.; Qin, Y.W.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.L.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.P.; Hu, G.H.; Chen, Y.M.; Li, X.; Xu, X.C.; Li, S.Y.; Pei, F.S.; Wang, S.J. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Xia, H.M.; Zhao, J.Y.; Qin, Y.C.; Yang, J.; Cui, Y.M.; Song, H.Q.; Ma, L.Q.; Jin, N.; Meng, Q.M. Changes in water surface area during 1989–2017 in the Huai river basin using landsat data and google earth engine. Remote Sens. 2019, 11, 1824. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Dong, J.W.; Xiao, X.M.; Xiao, T.; Yang, Z.Q.; Zhao, G.S.; Zou, Z.H.; Qin, Y.W. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Dong, J.W.; Xiao, X.M.; Menarguez, M.A.; Zhang, G.L.; Qin, Y.W.; Thau, D.; Biradar, C.; Moore III, B. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Lymburner, L.; Mclntyre, A.; Tan, P.; Curnow, S. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Dong, J.W.; Xiao, X.M.; Liu, R.G.; Zou, Z.H.; Zhao, G.S.; Ge, Q.S. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Sci. Total Environ. 2019, 689, 366–380. [Google Scholar] [CrossRef]
- Wang, X.X.; Xiao, X.M.; Zou, Z.H.; Dong, J.W.; Doughty, R.B.; Menarguez, M.A.; Chen, B.Q.; Wang, J.B.; Ye, H. Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nat. Commun. 2020, 11, 3471. [Google Scholar] [CrossRef]
- Tang, Q.H.; Liu, X.C.; Zhou, Y.Y.; Wang, J.; Yun, X.B. Cascading impacts of Asian water tower change on downstream water systems. Bull. Chin. Acad. Sci. 2019, 34, 1306–1312. [Google Scholar]
- Jia, S.; Liang, Y. Suggestions for strategic allocation of the Yellow River water resources under the new situation. Resour. Sci. 2020, 42, 29–36. [Google Scholar] [CrossRef]
- Xia, J.; Peng, S.M.; Wang, C.; Hong, S.; Chen, J.; Luo, X. Impact of climate change on water resources and adaptive management in the Yellow River Basin. Yellow River 2014, 36, 15. [Google Scholar]
- Liu, C.M.; Tian, W.; Liu, X.M. Analysis and understanding on runoff variation of the Yellow River in recent 100 years. Yellow River 2019, 41, 11–15. [Google Scholar]
- Wang, R.M.; Xia, H.M.; Qin, Y.C.; Niu, W.H.; Pan, L.; Li, R.M.; Zhao, X.Y.; Bian, X.Q.; Fu, P.D. Dynamic monitoring of surface water area during 1989–2019 in the Hetao plain using landsat data in google earth engine. Water 2020, 12, 3010. [Google Scholar] [CrossRef]
- Liang, K.; Li, Y.Z. Changes in lake area in response to climatic forcing in the endorheic Hongjian lake basin, China. Remote Sens. 2019, 11, 3046. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.L.; Jin, H.J.; Du, H.Q.; Li, C.; Ma, Q.; Duan, S.Q.; Li, G.S. Variation of alpine lakes from 1986 to 2019 in the Headwater Area of the Yellow River, Tibetan Plateau using Google Earth Engine. Adv. Clim. Chang. Res. 2020, 11, 11–21. [Google Scholar] [CrossRef]
- Liu, X. Causes of Sharp Decrease in Water and Sediment in Recent Years in the Yellow River; Science Press: Beijing, China, 2016. [Google Scholar]
- Li, J.; Peng, S.; Li, Z. Detecting and attributing vegetation changes on China s Loess Plateau. Agric. For. Meteorol. 2017, 247, 260–270. [Google Scholar] [CrossRef]
- Ju, J.C.; Roy, D.P.; Vermote, E.; Masek, J.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens. Environ. 2012, 122, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Wang, S.X.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Liu, Z.; Li, L.; Tim, R.M.; Vanniel, T.G.; Li, R. Introduction of the professional interpolation software for meteorology data: ANUSPLINN. Meteorol. Mon. 2008, 34, 92–100. [Google Scholar]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2014, 52, 209–223. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.Y.; Wang, Y.J.; Hu, Y.; Zhang, B. A SPECLib-based operational classification approach: A preliminary test on China land cover mapping at 30 M. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 83–94. [Google Scholar] [CrossRef]
- Deng, X.Y.; Song, C.Q.; Liu, K.; Ke, L.H.; Zhang, W.S.; Ma, R.H.; Zhu, J.Y.; Wu, Q.H. Remote sensing estimation of catchment-scale reservoir water impoundment in the upper Yellow River and implications for river discharge alteration. J. Hydrol. 2020, 585, 124791. [Google Scholar] [CrossRef]
- Wang, C.; Jia, M.M.; Chen, N.C.; Wang, W. Long-term surface water dynamics analysis based on landsat imagery and the google earth engine platform: A case study in the middle Yangtze River basin. Remote Sens. 2018, 10, 1635. [Google Scholar] [CrossRef] [Green Version]
- Egginton, P.; Beall, F.; Buttle, J. Reforestation–Climate change and water resource implications. For. Chron. 2014, 90, 516–524. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Cui, Z.; He, T. Attributing the Evapotranspiration Trend in the Upper and Middle Reaches of Yellow River Basin Using Global Evapotranspiration Products. Remote Sens. 2021, 14, 175. [Google Scholar] [CrossRef]
- Chen, X.Z.; Liu, L.Y.; Su, Y.X.; Yuan, W.P.; Liu, X.D.; Liu, Z.Y.; Zhou, G.Y. Quantitative association between the water yield impacts of forest cover changes and the biophysical effects of forest cover on temperatures. J. Hydrol. 2021, 600, 126529. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Sun, G.; Wang, X.; Zhou, C.Y.; McNulty, S.G.; Vose, J.M.; Amatya, D.M. Estimating forest ecosystem evapotranspiration at multiple temporal scales with a dimension analysis Approach1. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 208–221. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.J.; He, C.S.; Sun, G.; Gao, G.Y. A comparative analysis of forest cover and catchment water yield relationships in Northern China. For. Ecol. Manag. 2011, 262, 1189–1198. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, X.K.; Fang, N.F.; Shi, Z.H. Large-scale afforestation significantly increases permanent surface water in China′s vegetation restoration regions. Agric. For. Meteorol. 2020, 290, 108001. [Google Scholar] [CrossRef]
- van den Hurk, B.J.J.M.; Viterbo, P.; Los, S.O. Impact of leaf area index seasonality on the annual land surface evaporation in a global circulation model. J. Geophys. Res. Atmos. 2003, 108, D6. [Google Scholar] [CrossRef]
- Lakshmi, V.; Jackson, T.J.; Zehrfuhs, D. Soil moisture–temperature relationships: Results from two field experiments. Hydrol. Processes 2003, 17, 3041–3057. [Google Scholar] [CrossRef]
- Helvey, J.D.; Patric, J.H. Canopy and litter interception of rainfall by hardwoods of eastern United States. Water Resour. Res. 1965, 1, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Jian, S.Q.; Zhao, C.Y.; Fang, S.M.; Yu, K. Effects of different vegetation restoration on soil water storage and water balance in the Chinese Loess Plateau. Agric. For. Meteorol. 2015, 206, 85–96. [Google Scholar] [CrossRef]
- Wu, D.H.; Zhao, X.; Liang, S.L.; Zhou, T.; Huang, K.C.; Tang, B.J.; Zhao, W.Q. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Li, C.; Wang, Z.; Liu, Y.; Liu, W. Continuous Monitoring of the Surface Water Area in the Yellow River Basin during 1986–2019 Using Available Landsat Imagery and the Google Earth Engine. ISPRS Int. J. Geo-Inf. 2022, 11, 305. https://doi.org/10.3390/ijgi11050305
Hu Q, Li C, Wang Z, Liu Y, Liu W. Continuous Monitoring of the Surface Water Area in the Yellow River Basin during 1986–2019 Using Available Landsat Imagery and the Google Earth Engine. ISPRS International Journal of Geo-Information. 2022; 11(5):305. https://doi.org/10.3390/ijgi11050305
Chicago/Turabian StyleHu, Qingfeng, Chongwei Li, Zhihui Wang, Yang Liu, and Wenkai Liu. 2022. "Continuous Monitoring of the Surface Water Area in the Yellow River Basin during 1986–2019 Using Available Landsat Imagery and the Google Earth Engine" ISPRS International Journal of Geo-Information 11, no. 5: 305. https://doi.org/10.3390/ijgi11050305