Quantum Communications Feasibility Tests over a UK-Ireland 224 km Undersea Link
<p>Field trial and experimental setup. (<b>a</b>) Geographic representation and (<b>b</b>) satellite image of the field trial. The ‘Rockabill’ link deployed by the company euNetworks [<a href="#B33-entropy-25-01572" class="html-bibr">33</a>] is drawn as an orange line with endpoints in the cable landing stations (CLSs) of Portrane, IE, and Southport, UK. The blue dot in the top panel denotes the University of York (UoY). The whole experimental setup and its subsystems, including the SNSPDs, were moved from the UoY to the two CLSs to perform the feasibility tests. (<b>c</b>–<b>e</b>) Subsystems of the experimental setup to characterise the optical phase (top), polarisation (middle), and entangled photon pair distribution (bottom) across the UK–IE link. Map data courtesy of GHSSG, Esri, Maxar, Earthstar Geographics, and the GIS User Community.</p> "> Figure 2
<p>Relative phase drift of the fibre pair 39 and 40 of the Rockabill link: (<b>a</b>) <math display="inline"><semantics> <mrow> <mn>0.5</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="normal">s</mi> </semantics></math> of the phase drift of the channel; and (<b>b</b>) power spectral density (PSD) of the phase noise of the channel (blue), with detector noise (orange) plotted for comparison.</p> "> Figure 3
<p>The long-term polarisation drift of the channel over 14 <math display="inline"><semantics> <mi mathvariant="normal">h</mi> </semantics></math> overnight.</p> "> Figure 4
<p>Total count rates (blue) and QBER (red) for different quantum states prepared in Portrane, as measured in Southport. Plots (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) correspond to a preparation of the state <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>H</mi> <mo>〉</mo> </mrow> </semantics></math> measured in the rectilinear basis <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>/</mo> <mi>V</mi> </mrow> </semantics></math>; plots (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) are similar, but for the state <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>V</mi> <mo>〉</mo> </mrow> </semantics></math>. Plots (<b>i</b>,<b>j</b>) correspond to the states <span class="html-italic">D</span> and <span class="html-italic">A</span> prepared, respectively, measured in the rectilinear basis <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>/</mo> <mi>V</mi> </mrow> </semantics></math>. The first and last columns were generated with photon flux <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, whereas columns 2–4 depict the states at <math display="inline"><semantics> <mi>μ</mi> </semantics></math> equal to 0.6, 0.5, and 0.4, respectively.</p> "> Figure 5
<p>Simulation of the secret key rate (SKR, blue solid line) with the parameters of the UK–IE field trial (inset) and our experimental point (orange empty diamond). The distance of the field trial between Alice, in the Portrane CLS, and Bob, in the Southport CLS, is 224 km, which is only 9 km shorter than the maximum distance providing a positive SKR (233 km). Parameters—<math display="inline"><semantics> <msub> <mi>η</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>t</mi> </mrow> </msub> </semantics></math>: detection efficiency (SNSPD); <math display="inline"><semantics> <msub> <mi>η</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>c</mi> </mrow> </msub> </semantics></math>: efficiency of the receiver; <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>r</mi> <mi>k</mi> </mrow> </msub> </semantics></math>: dark counts; <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>y</mi> </mrow> </msub> </semantics></math>: background photons from the channel; <math display="inline"><semantics> <msub> <mi>e</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </semantics></math>: optical noise; <math display="inline"><semantics> <mi>μ</mi> </semantics></math>: mean photon number; <math display="inline"><semantics> <msub> <mi>f</mi> <mrow> <mi>c</mi> <mi>l</mi> <mi>o</mi> <mi>c</mi> <mi>k</mi> </mrow> </msub> </semantics></math>: clock rate of the simulated system.</p> "> Figure 6
<p>Histogram of the time delays between consecutive photon detections at the end of the two submarine channels. Pair photons from the EPS arrive with a fixed relative delay of 113 <math display="inline"><semantics> <mi mathvariant="normal">n</mi> </semantics></math><math display="inline"><semantics> <mi mathvariant="normal">s</mi> </semantics></math> at a signal-to-noise ratio of 1.92, computed over the indicated red 12 <math display="inline"><semantics> <mi mathvariant="normal">n</mi> </semantics></math><math display="inline"><semantics> <mi mathvariant="normal">s</mi> </semantics></math> coincidence window. The green lines indicates an exemplary coincidence window including only accidentals. The inlay shows the typical spectrum of the stray photon noise present in the channel, with the dashed lines indicating the wavelengths chosen for the EPS measurement.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Rockabill Link
2.2. Loss and Noise Characterisation
2.3. Optical Phase Characterisation
2.4. Polarisation Characterisation
2.5. Distribution of Photon Pairs Characterisation
3. Results
3.1. Optical Phase Characterisation
3.2. Polarisation Characterisation
3.3. Photon Pair Distribution Characterisation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CLS | Cable Landing Station |
EPC | Electrically Driven Polarisation Controller |
EPS | Entangled Pair Source |
EVOA | Electronic Variable Optical Attenuator |
IE | Republic of Ireland |
MEMS | Micro-Electromechanical Systems |
PBS | Polarising Beamsplitter |
PPLN | Periodically Poled Lithium Niobate |
PSD | Power Spectral Density |
QBER | Quantum Bit Error Rate |
QKD | Quantum Key Distribution |
SKR | Secret Key Rate |
SNSPD | Superconducting Nanowire Single-Photon Detector |
SPAD | Single-Photon Avalanche Detector |
SPDC | Spontaneous Parametric Downconversion |
TF | Twin-Field |
UK | United Kingdom |
UoY | University of York |
References
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comp. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef]
- Xu, F.; Ma, X.; Zhang, Q.; Lo, H.K.; Pan, J.W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020, 92, 025002. [Google Scholar] [CrossRef]
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012. [Google Scholar] [CrossRef]
- Bennett, C.H.; Bessette, F.; Brassard, G.; Salvail, L.; Smolin, J. Experimental quantum cryptography. J. Cryptol. 1992, 5, 3. [Google Scholar] [CrossRef]
- Bennett, C.H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 1992, 68, 3121–3124. [Google Scholar] [CrossRef] [PubMed]
- Agnesi, C.; Avesani, M.; Stanco, A.; Villoresi, P.; Vallone, G. All-fiber self-compensating polarization encoder for quantum key distribution. Opt. Lett. 2019, 44, 2398–2401. [Google Scholar] [CrossRef]
- Avesani, M.; Agnesi, C.; Stanco, A.; Vallone, G.; Villoresi, P. Stable, low-error, and calibration-free polarization encoder for free-space quantum communication. Opt. Lett. 2020, 45, 4706–4709. [Google Scholar] [CrossRef]
- Wang, W.; Wang, R.; Hu, C.; Zapatero, V.; Qian, L.; Qi, B.; Curty, M.; Lo, H.K. Fully Passive Quantum Key Distribution. Phys. Rev. Lett. 2023, 130, 220801. [Google Scholar] [CrossRef]
- Lucamarini, M.; Yuan, Z.L.; Dynes, J.F.; Shields, A.J. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 2018, 557, 400–403. [Google Scholar] [CrossRef]
- Minder, M.; Pittaluga, M.; Roberts, G.L.; Lucamarini, M.; Dynes, J.F.; Yuan, Z.L.; Shields, A.J. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics 2019, 13, 334–338. [Google Scholar] [CrossRef]
- Pittaluga, M.; Minder, M.; Lucamarini, M.; Sanzaro, M.; Woodward, R.I.; Li, M.J.; Yuan, Z.; Shields, A.J. 600-km repeater-like quantum communications with dual-band stabilization. Nat. Photonics 2021, 15, 530–535. [Google Scholar] [CrossRef]
- Wang, S.; Yin, Z.Q.; He, D.Y.; Chen, W.; Wang, R.Q.; Ye, P.; Zhou, Y.; Fan-Yuan, G.J.; Wang, F.X.; Chen, W.; et al. Twin-field quantum key distribution over 830-km fibre. Nat. Photonics 2022, 16, 154–161. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.J.; Jiang, C.; Chen, J.P.; Zhang, C.; Pan, W.X.; Ma, D.; Dong, H.; Xiong, J.M.; Zhang, C.J.; et al. Experimental Twin-Field Quantum Key Distribution over 1000 km Fiber Distance. Phys. Rev. Lett. 2023, 130, 210801. [Google Scholar] [CrossRef]
- Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. Fundamental Limits of Repeaterless Quantum Communications. Nat. Commun. 2017, 8, 15043. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Mermin, N.D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 1992, 68, 557–559. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef]
- Bouwmeester, D.; Pan, J.W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A. Experimental quantum teleportation. Nature 1997, 390, 575–579. [Google Scholar] [CrossRef]
- Boschi, D.; Branca, S.; De Martini, F.; Hardy, L.; Popescu, S. Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein–Podolsky-Rosen Channels. Phys. Rev. Lett. 1998, 80, 1121–1125. [Google Scholar] [CrossRef]
- Peev, M.; Pacher, C.; Alléaume, R.; Barreiro, C.; Bouda, J.; Boxleitner, W.; Debuisschert, T.; Diamanti, E.; Dianati, M.; Dynes, J.F.; et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 2009, 11, 075001. [Google Scholar] [CrossRef]
- Sasaki, M.; Fujiwara, M.; Ishizuka, H.; Klaus, W.; Wakui, K.; Takeoka, M.; Miki, S.; Yamashita, T.; Wang, Z.; Tanaka, A.; et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 2011, 19, 10387. [Google Scholar] [CrossRef]
- Dynes, J.F.; Wonfor, A.; Tam, W.W.S.; Sharpe, A.W.; Takahashi, R.; Lucamarini, M.; Plews, A.; Yuan, Z.L.; Dixon, A.R.; Cho, J.; et al. Cambridge quantum network. NPJ Quantum Inf. 2019, 5, 101. [Google Scholar] [CrossRef]
- Joshi, S.K.; Aktas, D.; Wengerowsky, S.; Lončarić, M.; Neumann, S.P.; Liu, B.; Scheidl, T.; Lorenzo, G.C.; Samec, Ž.; Kling, L.; et al. A trusted node–free eight-user metropolitan quantum communication network. Sci. Adv. 2020, 6, eaba0959. [Google Scholar] [CrossRef] [PubMed]
- Avesani, M.; Calderaro, L.; Foletto, G.; Agnesi, C.; Picciariello, F.; Santagiustina, F.B.L.; Scriminich, A.; Stanco, A.; Vedovato, F.; Zahidy, M.; et al. Resource-effective quantum key distribution: A field trial in Padua city center. Opt. Lett. 2021, 46, 2848–2851. [Google Scholar] [CrossRef]
- Wonfor, A.; White, C.; Lord, A.; Nejabati, R.; Spiller, T.P.; Dynes, J.F.; Shields, A.J.; Penty, R.V. Quantum networks in the UK. In Metro and Data Center Optical Networks and Short-Reach Links IV; Glick, M., Srivastava, A.K., Akasaka, Y., Eds.; SPIE: Bellingham, WA, USA, 2021. [Google Scholar] [CrossRef]
- Ribezzo, D.; Zahidy, M.; Vagniluca, I.; Biagi, N.; Francesconi, S.; Occhipinti, T.; Oxenløwe, L.K.; Lončarić, M.; Cvitić, I.; Stipčević, M.; et al. Deploying an Inter-European Quantum Network. Adv. Quantum Technol. 2023, 6, 2200061. [Google Scholar] [CrossRef]
- Bersin, E.; Grein, M.; Sutula, M.; Murphy, R.; Huan, Y.Q.; Stevens, M.; Suleymanzade, A.; Lee, C.; Riedinger, R.; Starling, D.J.; et al. Development of a Boston-area 50-Km Fiber Quantum Network Testbed. arXiv 2023, arXiv:2307.15696. [Google Scholar]
- Neumann, S.P.; Buchner, A.; Bulla, L.; Bohmann, M.; Ursin, R. Continuous entanglement distribution over a transnational 248-km fiber link. Nat. Commun. 2022, 13, 6134. [Google Scholar] [CrossRef]
- Wengerowsky, S.; Joshi, S.K.; Steinlechner, F.; Zichi, J.R.; Dobrovolskiy, S.M.; van der Molen, R.; Los, J.W.N.; Zwiller, V.; Versteegh, M.A.M.; Mura, A.; et al. Entanglement distribution over a 96-km-long submarine optical fiber. Proc. Natl. Acad. Sci. USA 2019, 116, 6684–6688. [Google Scholar] [CrossRef]
- Wengerowsky, S.; Joshi, S.K.; Steinlechner, F.; Zichi, J.R.; Liu, B.; Scheidl, T.; Dobrovolskiy, S.M.; Molen, R.v.d.; Los, J.W.N.; Zwiller, V.; et al. Passively stable distribution of polarisation entanglement over 192 km of deployed optical fibre. NPJ Quantum Inf. 2020, 6, 5. [Google Scholar] [CrossRef]
- Ribezzo, D.; Zahidy, M.; Lemmi, G.; Petitjean, A.; De Lazzari, C.; Vagniluca, I.; Conca, E.; Tosi, A.; Occhipinti, T.; Oxenløwe, L.K.; et al. Quantum Key Distribution over 100 Km Underwater Optical Fiber Assisted by a Fast-Gated Single-Photon Detector. arXiv 2023, arXiv:2303.01449. [Google Scholar] [CrossRef]
- euNetworks. Available online: https://eunetworks.com/ (accessed on 25 September 2023).
- Clivati, C.; Marra, G.; Levi, F.; Mura, A.; Xuereb, A.; Calonico, D. Optical Frequency Transfer over Submarine Fibers. In Proceedings of the Conference on Lasers and Electro-Optics (2020); Paper SM2N.1; Optica Publishing Group: Washington, DC, USA, 2020; p. SM2N.1. [Google Scholar] [CrossRef]
- Polarization Entangled Photon Sources|OZ Optics Ltd. Available online: https://www.ozoptics.com/products/polarization-entangled-photon-sources.html (accessed on 25 September 2023).
- Fröhlich, B.; Lucamarini, M.; Dynes, J.F.; Comandar, L.C.; Tam, W.W.S.; Plews, A.; Sharpe, A.W.; Yuan, Z.; Shields, A.J. Long-distance quantum key distribution secure against coherent attacks. Optica 2017, 4, 163. [Google Scholar] [CrossRef]
- ID281 Superconducting Nanowire Series|IDQuantique. Available online: https://www.idquantique.com/quantum-sensing/products/id281-snspd-series/ (accessed on 25 September 2023).
- Hwang, W.Y. Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 2003, 91, 057901. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.B. Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography. Phys. Rev. Lett. 2005, 94, 230503. [Google Scholar] [CrossRef]
- Lo, H.K.; Ma, X.; Chen, K. Decoy State Quantum Key Distribution. Phys. Rev. Lett. 2005, 94, 230504. [Google Scholar] [CrossRef]
- Horn, R.; Jennewein, T. Auto-balancing and robust interferometer designs for polarization entangled photon sources. Opt. Express 2019, 27, 17369. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, L.; Lu, Y.; Li, Z.P.; Jiang, C.; Liu, Y.; Huang, J.; Li, H.; Wang, Z.; Wang, X.B.; et al. Twin-Field Quantum Key Distribution without Phase Locking. Phys. Rev. Lett. 2023, 130, 250802. [Google Scholar] [CrossRef]
- Clivati, C.; Meda, A.; Donadello, S.; Virzì, S.; Genovese, M.; Levi, F.; Mura, A.; Pittaluga, M.; Yuan, Z.; Shields, A.J.; et al. Coherent phase transfer for real-world twin-field quantum key distribution. Nat. Commun. 2022, 13, 157. [Google Scholar] [CrossRef]
- Ma, X.; Qi, B.; Zhao, Y.; Lo, H.K. Practical decoy state for quantum key distribution. Phys. Rev. A 2005, 72, 012326. [Google Scholar] [CrossRef]
- Inagaki, T.; Matsuda, N.; Tadanaga, O.; Asobe, M.; Takesue, H. Entanglement distribution over 300 km of fiber. Opt. Express 2013, 21, 23241–23249. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amies-King, B.; Schatz, K.P.; Duan, H.; Biswas, A.; Bailey, J.; Felvinti, A.; Winward, J.; Dixon, M.; Minder, M.; Kumar, R.; et al. Quantum Communications Feasibility Tests over a UK-Ireland 224 km Undersea Link. Entropy 2023, 25, 1572. https://doi.org/10.3390/e25121572
Amies-King B, Schatz KP, Duan H, Biswas A, Bailey J, Felvinti A, Winward J, Dixon M, Minder M, Kumar R, et al. Quantum Communications Feasibility Tests over a UK-Ireland 224 km Undersea Link. Entropy. 2023; 25(12):1572. https://doi.org/10.3390/e25121572
Chicago/Turabian StyleAmies-King, Ben, Karolina P. Schatz, Haofan Duan, Ayan Biswas, Jack Bailey, Adrian Felvinti, Jaimes Winward, Mike Dixon, Mariella Minder, Rupesh Kumar, and et al. 2023. "Quantum Communications Feasibility Tests over a UK-Ireland 224 km Undersea Link" Entropy 25, no. 12: 1572. https://doi.org/10.3390/e25121572
APA StyleAmies-King, B., Schatz, K. P., Duan, H., Biswas, A., Bailey, J., Felvinti, A., Winward, J., Dixon, M., Minder, M., Kumar, R., Albosh, S., & Lucamarini, M. (2023). Quantum Communications Feasibility Tests over a UK-Ireland 224 km Undersea Link. Entropy, 25(12), 1572. https://doi.org/10.3390/e25121572