Transcriptome Profiles of Circular RNAs in Common Wheat during Fusarium Head Blight Disease
<p>Overview of experiment design and analysis pipeline. Wheat spikelet tissues subjected to <span class="html-italic">F</span>. <span class="html-italic">graminearum</span> conidia suspension were harvested at 1, 3, and 5 days post inoculation (dpi) and tissues without inoculation were harvested as control (CK). The circRNA-seq was performed by the Illumina HiSeq Xten platform. Raw reads were quality assessed and filtered, and clean reads were used to identify circRNA by CIRI2, CIRCexplorer, and find_circ. Characterization analyses of circRNAs were also performed.</p> "> Figure 2
<p>Characterization of wheat circRNAs. The number of circRNAs is supported by at least (<b>A</b>) two junction reads and (<b>B</b>) two identification tools. (<b>C</b>) Percentage and amount of circRNAs generated by the exon, intergenic, and intron chromosomal reigns. (<b>D</b>) Chromosome distribution and density of circRNA and reference mRNA. (<b>E</b>) Length distribution of circRNA. (<b>F</b>) The number of circRNA in the corresponding chromosome. (<b>G</b>) Correlation analysis between the length of each chromosome and the amount of circRNA in the corresponding chromosome (<span class="html-italic">t</span>-test, <span class="html-italic">p</span>-value < 0.005). (<b>H</b>) Alternative circularization event and the corresponding number of circRNA isoforms. (<b>I</b>) The overall expression patterns of wheat circRNA under CK, 1dpi (days post inoculation), 3dpi, and 5dpi. Log<sub>2</sub>(SRPBM + 1) values were used to draw the violin plot. *** <span class="html-italic">p</span> < 0.005, Wilcoxon rank-sum test.</p> "> Figure 3
<p>Quality control of raw sequencing reads and circRNAs. (<b>A</b>) Per sequence quality scores. The x-axis depicts the mean value of sequence quality scores, and the y-axis represents the read counts. (<b>B</b>) Mean quality scores of each sequence position. The x-axis depicts the position, and the y-axis depicts the Phred1.9 score. (<b>C</b>) The GC content of sequencing reads. The x-axis depicts the GC content, and the y-axis represents the percentage of reads. (<b>D</b>) Sequence length distribution. The x-axis represents the length of sequencing reads, and the y-axis depicts the count of a sequencing read. (<b>E</b>) PCR and (<b>F</b>,<b>G</b>) Sanger confirmation of circRNAs. The gDNA and cDNA were both used as templates for PCR validation. The circular indicates the designed amplicon hugging the back-splicing site. 1: chr1A_part1:261131674|261134157; 2: chr1D_part1:416533069|416534514; 3: chr2A_part1:41738558|41741294; 4: chr2D_part1:344564233|344568330; 5: chr2D_part1:34672266|34676866; 6: chr3B_part2:286756868|286758204; 7: chr3D_part2:64328371|64329861; 8: chr4B_part2:202415073|202415465; 9: chr5A_part1:6666752|6667506; 10: chr5A_part2:178282187|178282717; 11: chr5B_part1:170596562|170597173; 12: chr6A_part1:114227778|114230210; 13: chr6A_part1:212312197|212313644. Arrow indicates the back-splicing site.</p> ">
Abstract
:1. Summary
2. Data Description
2.1. Identification and Characterization of Wheat circRNAs
2.2. Quality Validation and Analyses
2.3. Experimental Validation of cicrRNAs
3. Methods
3.1. Plant Treatment and Materials Collection
3.2. RNA Isolation, Library Preparation, and Sequencing
3.3. CircRNA Prediction and Annotation
3.4. CircRNA Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, J.; Yan, J.; Hou, L.; Jiang, L.; Xian, W.; Guo, Q. Identification and functional deciphering suggested the regulatory roles of long intergenic ncRNAs (lincRNAs) in increasing grafting pepper resistance to Phytophthora capsici. BMC Genom. 2021, 22, 868. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Lu, W.; Zhong, C.; Zhou, R.; Xu, J.; Liu, W.; Gou, X.; Wang, Q.; Yin, J.; Xu, C.; et al. The 25–26 nt small RNAs in Phytophthora parasitica are associated with efficient silencing of homologous endogenous genes. Front. Microbiol. 2017, 8, 773. [Google Scholar] [CrossRef] [PubMed]
- Ozata, D.M.; Gainetdinov, I.; Zoch, A.; O’Carroll, D.; Zamore, P.D. Piwi-interacting RNAs: Small RNAs with big functions. Nat. Rev. Genet. 2019, 20, 89–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, T.; Xu, K.; Zhang, W.; Wang, X.; Quan, J.; Jin, W.; Zhang, M.; Fan, G.; Wang, M.-B.; et al. The tRNA-derived small RNAs regulate gene expression through triggering sequence-specific degradation of target transcripts in the oomycete pathogen Phytophthora sojae. Front. Plant Sci. 2016, 7, 1938. [Google Scholar] [CrossRef]
- Zhu, Y.-X.; Gong, H.-J.; Yin, J.-L. Role of silicon in mediating salt tolerance in plants: A review. Plants 2019, 8, 147. [Google Scholar] [CrossRef]
- Hutchins, E.; Reiman, R.; Winarta, J.; Beecroft, T.; Richholt, R.; De Both, M.; Shahbander, K.; Carlson, E.; Janss, A.; Siniard, A.; et al. Extracellular circular RNA profiles in plasma and urine of healthy, male college athletes. Sci. Data 2021, 8, 276. [Google Scholar] [CrossRef]
- Yin, J.; Liu, Y.; Lu, L.; Zhang, J.; Chen, S.; Wang, B. Comparison of tolerant and susceptible cultivars revealed the roles of circular RNAs in rice responding to salt stress. Plant Growth Regul. 2022, 96, 243–254. [Google Scholar] [CrossRef]
- Song, Y.; Bu, C.; Chen, P.; Liu, P.; Zhang, D. Miniature inverted repeat transposable elements cis-regulate circular RNA expression and promote ethylene biosynthesis, reducing heat tolerance in Populus tomentosa. J. Exp. Bot. 2021, 72, 1978–1994. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. Multiqc: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, J.; Yang, L.; Xia, Y.; Zhang, H.-L.; Jia, J.-B.; Zhou, R.; Nie, P.; Yin, J.; Ma, D.; et al. Identification of cucumber circular RNAs responsive to salt stress. BMC Plant Biol. 2019, 19, 164. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhu, Y.; Ma, D.; Xu, W.; Zhou, J.; Yan, H.; Yang, L.; Yin, J. Screening, identification, and optimization of fermentation conditions of an antagonistic endophyte to wheat head blight. Agronomy 2019, 9, 476. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 3. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Zhao, F. Circular RNA identification based on multiple seed matching. Brief. Bioinform. 2017, 1, 8. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Zhang, X.-O.; Dong, R.; Zhang, Y.; Zhang, J.-L.; Luo, Z.; Zhang, J.; Chen, L.-L.; Yang, L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016, 26, 1277–1287. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. Star: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef]
- Ginestet, C. Ggplot2: Elegant graphics for data analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2011, 174, 245–246. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Xiao, Y.; Wen, Y.; Li, K.; Ma, Z.; Yang, L.; Zhu, Y.; Yin, J. Genome-wide characterization and function analysis uncovered roles of wheat LIMs in responding to adverse stresses and TaLIM8-4d function as a susceptible gene. Plant Genome 2022, 16, e20246. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zhu, Y.X.; Zhao, J.; Fang, Z.W.; Wang, S.P.; Yin, J.L.; Chu, Z.H.; Ma, D.F. Transcriptome-wide identification and characterization of potato circular RNAs in response to Pectobacterium carotovorum subspecies Brasiliense infection. Int. J. Mol. Sci. 2018, 19, 71. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Jiang, X.; Zhang, J.; He, Y.; Zhu, X.; Zhou, X.; Gong, H.; Yin, J.; Liu, Y. Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiol. Biochem. 2020, 156, 209–220. [Google Scholar] [CrossRef] [PubMed]
Sample | Total Read | Total Nucleotide | Mapped Read | Junction Read | circRNA |
---|---|---|---|---|---|
CK-1 | 113,296,324 | 16,977,968,286 | 113,268,516 (99.98%) | 9331 | 524 |
CK-2 | 96,535,080 | 14,466,477,354 | 96,525,780 (99.99%) | 6169 | 423 |
CK-3 | 95,852,450 | 14,364,048,986 | 95,838,636 (99.99%) | 8563 | 445 |
1dpi-1 | 84,027,080 | 12,585,181,788 | 84,017,092 (99.99%) | 5912 | 389 |
1dpi-2 | 93,824,346 | 14,061,562,762 | 93,813,330 (99.99%) | 7958 | 417 |
1dpi-3 | 91,705,700 | 13,741,540,930 | 91,697,446 (99.99%) | 4359 | 294 |
3dpi-1 | 75,244,738 | 11,277,256,034 | 75,234,074 (99.99%) | 6064 | 268 |
3dpi-2 | 78,315,988 | 11,725,202,928 | 78,307,278 (99.99%) | 4605 | 335 |
3dpi-3 | 83,094,636 | 12,462,077,092 | 83,085,624 (99.99%) | 3919 | 204 |
5dpi-1 | 75,556,066 | 11,324,136,146 | 75,549,434 (99.99%) | 7074 | 390 |
5dpi-2 | 69,615,180 | 10,435,443,382 | 69,609,180 (99.99%) | 5410 | 323 |
5dpi-3 | 81,055,942 | 12,144,088,814 | 81,047,912 (99.99%) | 5649 | 413 |
All | 1,038,123,530 | 155,564,984,502 | 1,037,994,302 (99.99%) | 75,013 | 2091 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Han, X.; Zhu, Y.; Fang, Z.; Gao, D.; Ma, D. Transcriptome Profiles of Circular RNAs in Common Wheat during Fusarium Head Blight Disease. Data 2022, 7, 121. https://doi.org/10.3390/data7090121
Yin J, Han X, Zhu Y, Fang Z, Gao D, Ma D. Transcriptome Profiles of Circular RNAs in Common Wheat during Fusarium Head Blight Disease. Data. 2022; 7(9):121. https://doi.org/10.3390/data7090121
Chicago/Turabian StyleYin, Junliang, Xiaowen Han, Yongxing Zhu, Zhengwu Fang, Derong Gao, and Dongfang Ma. 2022. "Transcriptome Profiles of Circular RNAs in Common Wheat during Fusarium Head Blight Disease" Data 7, no. 9: 121. https://doi.org/10.3390/data7090121
APA StyleYin, J., Han, X., Zhu, Y., Fang, Z., Gao, D., & Ma, D. (2022). Transcriptome Profiles of Circular RNAs in Common Wheat during Fusarium Head Blight Disease. Data, 7(9), 121. https://doi.org/10.3390/data7090121