Analyses of Li-Rich Minerals Using Handheld LIBS Tool
<p>(<b>a</b>) Full portable LIBS operating on a pegmatite outcrop; some of the detected elements and the LIBS spectra can be seen on the screen; (<b>b</b>) transfer of the data from the Z300 to the laptop using the Profile Builder interface.</p> "> Figure 2
<p>(<b>a</b>) Schematic representation of the analytical protocol for the LIBS analysis on powder pellets, with the five different random zones, nine points for each; (<b>b</b>) images of powder pellets with random areas of analysis; the nine craters can be seen as a square, and the crater size is around 100 µm due to the smoothness of the material.</p> "> Figure 3
<p>LIBS spectra obtained from different Li-rich minerals: amblygonite (4371-ambly-PF-M-0031-A2_2_20191), petalite (4183-peta-LB-R-0013-A_3_2019112), and spodumene (Boa-RS-Spo-M_20190417_043329_PM). (<b>a</b>) Spectra in the entire wavelength range; (<b>b</b>) zoomed image of the Na doublet and Li emission lines; (<b>c</b>) zoomed image of the K and Rb emissions lines from the VNIR. The major element emission lines are shown on the spectra; the LIBS spectra are not normalized.</p> ">
Abstract
:1. Summary
2. Data Description
2.1. Format of the LIBS Spectra Files
2.2. Mineral Samples
2.3. Thin Rock Sections
2.4. Powder Pellets
2.5. Best Conditions for LIBS Analysis
3. Methods
3.1. Laser-Induced Breakdown Spectroscopy Technique
3.2. LIBS Spectra Acquisition (Z300 Instrument)
3.2.1. Laser Parameters and Ablation
3.2.2. Wavelength Range of the Detectors
3.2.3. Number of Measurements
- For Li minerals, which were reported as reference minerals and analyzed in GeoRessources laboratory of Université de Lorraine, the LIBS rasters were centered along a three points by five points rectangle with four laser shots at each point (with one laser cleaning shot to avoid any dust contamination). This grid was duplicated for each sample and 30 LIBS spectra were obtained to mimic a bulk composition. Then, the mean average LIBS spectra values were recorded and they corresponded to the database reported here (258 mean spectra). To ensure that we were on a non-altered mineral, the selected zones were based on the selection of the most color-homogenized zone observed on the entire sample (larger than 3 mm square). This protocol was also followed for the bulk analysis.
- For powder pellets, which were realized at GeoRessources and analyzed there, the grid was three points by three points with five laser shots at each point (one cleaning laser shot). Five different random locations were studied and 45 LIBS spectra were recorded. For this data paper, each LIBS reference spectrum on each pellet corresponds to the mean LIBS of 45 spectra (Figure 2).
3.2.4. Atmosphere and Time Gating Measurement
3.3. LIBS Spectra Analysis
3.3.1. Detected Elements
3.3.2. Spectra Treatment
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radziemski, L.J. From LASER to LIBS, the path of technology development. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 1109–1113. [Google Scholar] [CrossRef]
- Cremers, D.A.; Radziemski, L.J. History and fundamentals of LIBS. In Laser Induced Breakdown Spectroscopy: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2006; pp. 9–16. [Google Scholar]
- Harmon, R.S.; De Lucia, F.C.; McManus, C.E.; McMillan, N.J.; Jenkins, T.F.; Walsh, M.E.; Miziolek, A. Laser-induced breakdown spectroscopy—An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications. Appl. Geochem. 2006, 21, 730–747. [Google Scholar] [CrossRef]
- Alvey, D.C.; Morton, K.; Harmon, R.S.; Gottfried, J.L.; Remus, J.J.; Collins, L.M.; Wise, M.A. Laser-induced breakdown spectroscopy-based geochemical fingerprinting for the rapid analysis and discrimination of minerals: The example of garnet. Appl. Opt. 2010, 49, C168–C180. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Dell’Aglio, M.; De Giacomo, A.; Gaudiuso, R.; Senesi, G.S.; de Pascale, O.; Capitelli, F.; Nestola, F.; Ghiara, M.R. Multi-methodological investigation of kunzite, hiddenite, alexandrite, elbaite and topaz, based on laser-induced breakdown spectroscopy and conventional analytical techniques for supporting mineralogical characterization. Phys. Chem. Miner. 2013, 41, 127–140. [Google Scholar] [CrossRef]
- Díaz, D.; Hahn, D.W.; Molina, A. Quantification of gold and silver in minerals by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2017, 136, 106–115. [Google Scholar] [CrossRef]
- Castello, M.; Constantin, M.; Laflamme, M. Measurements of Gold in Ores by LIBS.; Quebec City, 23 August 2017. Available online: https://numerique.banq.qc.ca/patrimoine/details/52327/3081324 (accessed on 21 June 2021).
- Harhira, A.; Bouchard, P.; Rifai, K.; Haddad, J.E.; Sabsabi, M.; Blouin, A.; Laflamme, M. Advanced La-ser-Induced Breakdown Spectroscopy (LIBS) Sensor for Gold Mining. 2017. Available online: https://nrc-publications.canada.ca/eng/view/ft/?id=e302005a-66d5-4a1e-921d-d2cdb0ba0e77 (accessed on 1 April 2021).
- McMillan, N.J.; Curry, J.; Dutrow, B.L.; Henry, D.J. Identification of the Host Lithology of Tourmaline Using Laser-Induced Breakdown Spectroscopy for Application in Sediment Provenance and Mineral Exploration. Can. Miner. 2018, 56, 393–410. [Google Scholar] [CrossRef]
- Rifai, K.; Doucet, F.; Özcan, L.; Vidal, F. LIBS core imaging at kHz speed: Paving the way for real-time geochemical applications. Spectrochim. Acta Part B At. Spectrosc. 2018, 150, 43–48. [Google Scholar] [CrossRef]
- Fabre, C.; Devismes, D.; Moncayo, S.; Pelascini, F.; Trichard, F.; Lecomte, A.; Bousquet, B.; Cauzid, J.; Motto-Ros, V. Elemental imaging by laser-induced breakdown spectroscopy for the geological characterization of minerals. J. Anal. At. Spectrom. 2018, 33, 1345–1353. [Google Scholar] [CrossRef]
- Jolivet, L.; Leprince, M.; Moncayo, S.; Sorbier, L.; Lienemann, C.-P.; Motto-Ros, V. Review of the recent advances and applications of LIBS-based imaging. Spectrochim. Acta Part B At. Spectrosc. 2019, 151, 41–53. [Google Scholar] [CrossRef]
- Bi, Y.; Yan, M.; Dong, X.; Li, Z.; Zhang, Y.; Li, Y. Recognition of 25 natural geological samples using a modified correlation analysis method and laser-induced breakdown spectroscopic data. Optics 2018, 158, 1058–1062. [Google Scholar] [CrossRef]
- McManus, C.E.; Dowe, J.; McMillan, N.J. Quantagenetics® analysis of laser-induced breakdown spectroscopic data: Rapid and accurate authentication of materials. Spectrochim. Acta Part B At. Spectrosc. 2018, 145, 79–85. [Google Scholar] [CrossRef]
- Busser, B.; Moncayo, S.; Coll, J.-L.; Sancey, L.; Motto-Ros, V. Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications. Coord. Chem. Rev. 2018, 358, 70–79. [Google Scholar] [CrossRef]
- Akhmetzhanov, T.F.; Labutin, T.A.; Zaytsev, S.M.; Drozdova, A.N.; Popov, A.M. Determination of the Mn/Fe Ratio in Ferromanganese Nodules Using Calibration-Free Laser-Induced Breakdown Spectroscopy. Opt. Spectrosc. 2019, 126, 316–320. [Google Scholar] [CrossRef]
- Fabre, C. Advances in Laser-Induced Breakdown Spectroscopy analysis for geology: A critical review. Spectrochim. Acta Part B At. Spectrosc. 2020, 166, 105799. [Google Scholar] [CrossRef]
- Lawley, C.J.; Somers, A.M.; Kjarsgaard, B.A. Rapid geochemical imaging of rocks and minerals with handheld laser induced breakdown spectroscopy (LIBS). J. Geochem. Explor. 2021, 222, 106694. [Google Scholar] [CrossRef]
- Vasavada, A.R.; Grotzinger, J.P.; Arvidson, R.E.; Calef, F.J.; Crisp, J.; Gupta, S.; A Hurowitz, J.; Mangold, N.; Maurice, S.; E Schmidt, M.; et al. Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond. J. Geophys. Res. Planets 2014, 119, 1134–1161. [Google Scholar] [CrossRef]
- Forni, O.; Gaft, M.; Toplis, M.J.; Clegg, S.M.; Maurice, S.; Wiens, R.C.; Mangold, N.; Gasnault, O.; Sautter, V.; Le Mouélic, S.; et al. First detection of fluorine on Mars: Implications for Gale Crater’s geochemistry. Geophys. Res. Lett. 2015, 42, 1020–1028. [Google Scholar] [CrossRef]
- Cousin, A.; Meslin, P.; Wiens, R.; Rapin, W.; Mangold, N.; Fabre, C.; Gasnault, O.; Forni, O.; Tokar, R.; Ollila, A.; et al. Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils. Icarus 2015, 249, 22–42. [Google Scholar] [CrossRef]
- Payré, V.; Fabre, C.; Sautter, V.; Cousin, A.; Mangold, N.; Le Deit, L.; Forni, O.; Goetz, W.; Wiens, R.C.; Gasnault, O.; et al. Copper enrichments in the Kimberley formation in Gale crater, Mars: Evidence for a Cu deposit at the source. Icarus 2019, 321, 736–751. [Google Scholar] [CrossRef] [Green Version]
- Wiens, R.C.; Sylvestre, S.; the MSL Science Team Maurice; Reitz, G. DLR Collaborator (MSL Science Team) ChemCam: Chemostratigraphy by the First Mars Microprobe. Elements 2015, 11, 33–38. [Google Scholar] [CrossRef]
- Fabre, C.; Bousquet, B. De chemcam à supercam: L’apport de la LIBS pour le spatial. Photon 2020, 38–41. [Google Scholar] [CrossRef]
- Maurice, S.; Wiens, R.C.; Bernardi, P.; Caïs, P.; Robinson, S.; Nelson, T.; Gasnault, O.; Reess, J.-M.; Deleuze, M.; Rull, F.; et al. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Sci. Rev. 2021, 217, 47. [Google Scholar] [CrossRef]
- Wiens, R.C.; Maurice, S.; Robinson, S.H.; Nelson, A.E.; Cais, P.; Bernardi, P.; Newell, R.T.; Clegg, S.; Sharma, S.K.; Storms, S.; et al. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. Space Sci. Rev. 2021, 217, 4. [Google Scholar] [CrossRef]
- Cuñat, J.; Palanco, S.; Carrasco, F.; Simón, M.D.; Laserna, J.J. Portable instrument and analytical method using laser-induced breakdown spectrometry for in situ characterization of speleothems in karstic caves. J. Anal. At. Spectrom. 2005, 20, 295–300. [Google Scholar] [CrossRef]
- Rakovský, J.; Čermák, P.; Musset, O.; Veis, P. A review of the development of portable laser induced breakdown spectroscopy and its applications. Spectrochim. Acta Part B At. Spectrosc. 2014, 101, 269–287. [Google Scholar] [CrossRef]
- Connors, B.; Somers, A.; Day, D. Application of Handheld Laser-Induced Breakdown Spectroscopy (LIBS) to Geochemical Analysis. Appl. Spectrosc. 2016, 70, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Bennett, B.N.; Martin, M.Z.; Leonard, D.N.; Garlea, E. Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy. Appl. Phys. A 2018, 124, 42. [Google Scholar] [CrossRef]
- Foucaud, Y.; Fabre, C.; Demeusy, B.; Filippova, I.; Filippov, L. Optimisation of fast quantification of fluorine content using handheld laser induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2019, 158, 105628. [Google Scholar] [CrossRef]
- Harmon, R.S.; Lawley, C.J.; Watts, J.; Harraden, C.L.; Somers, A.M.; Hark, R.R. Laser-Induced Breakdown Spectroscopy—An Emerging Analytical Tool for Mineral Exploration. Minerals 2019, 9, 718. [Google Scholar] [CrossRef] [Green Version]
- Pochon, A.; Desaulty, A.-M.; Bailly, L. Handheld laser-induced breakdown spectroscopy (LIBS) as a fast and easy method to trace gold. J. Anal. At. Spectrom. 2020, 35, 254–264. [Google Scholar] [CrossRef]
- Senesi, G.S.; Harmon, R.S.; Hark, R.R. Field-portable and handheld laser-induced breakdown spectroscopy: Historical review, current status and future prospects. Spectrochim. Acta Part B At. Spectrosc. 2021, 175, 106013. [Google Scholar] [CrossRef]
- Colao, F.; Fantoni, R.; Lazić, V.; Spizzichino, V. Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks—application on multi-layered ceramics and copper based alloys. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 1219–1234. [Google Scholar] [CrossRef]
- El Haddad, J.; Canioni, L.; Bousquet, B. Good practices in LIBS analysis: Review and advices. Spectrochim. Acta Part B At. Spectrosc. 2014, 101, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Niu, G.; Lin, Q.; Xu, T.; Li, F.; Duan, Y. Quantitative analysis of sedimentary rocks using laser-induced breakdown spectroscopy: Comparison of support vector regression and partial least squares regression chemometric methods. J. Anal. At. Spectrom. 2015, 30, 2384–2393. [Google Scholar] [CrossRef]
- Ahmad, N.; Ahmed, R.; Umar, Z.A.; Liaqat, U.; Manzoor, U.; Baig, M.A. Qualitative and quantitative analyses of copper ores collected from Baluchistan, Pakistan using LIBS and LA-TOF-MS. Appl. Phys. A 2018, 124, 160. [Google Scholar] [CrossRef]
- Maaza, M.; Mothudi, B.M. Laser-Induced Breakdown Spectroscopy (LIBS) on Geological Samples: Compositional Differentiation and Relative Hardness Quantification. Master’s Thesis, University of South Africa, Pretoria, South Africa, 2018. [Google Scholar]
- Guezenoc, J.; Gallet-Budynek, A.; Bousquet, B. Critical review and advices on spectral-based normalization methods for LIBS quantitative analysis. Spectrochim. Acta Part B At. Spectrosc. 2019, 160, 105688. [Google Scholar] [CrossRef]
- Sobron, P. Non-Linear Methods for Quantitative Elemental Analysis and Mineral Classification Using Laser-Induced Breakdown Spectroscopy (LIBS) 2019. Available online: https://patents.google.com/patent/US20190079019A1/en (accessed on 21 June 2021).
- Syvilay, D.; Guezenoc, J.; Bousquet, B. Guideline for increasing the analysis quality in laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2019, 161, 105696. [Google Scholar] [CrossRef]
- Duponchel, L.; Bousquet, B.; Pelascini, F.; Motto-Ros, V. Should we prefer inverse models in quantitative LIBS analysis? J. Anal. At. Spectrom. 2020, 35, 794–803. [Google Scholar] [CrossRef]
- Rifai, K.; Paradis, M.-C.M.; Swierczek, Z.; Doucet, F.; Özcan, L.; Fayad, A.; Li, J.; Vidal, F. Emergences of New Technology for Ultrafast Automated Mineral Phase Identification and Quantitative Analysis Using the CORIOSITY Laser-Induced Breakdown Spectroscopy (LIBS) System. Minerals 2020, 10, 918. [Google Scholar] [CrossRef]
- Rifai, K.; Özcan, L.-Ç.; Doucet, F.R.; Rhoderick, K.; Vidal, F. Ultrafast Elemental Mapping of Platinum Group Elements and Mineral Identification in Platinum-Palladium Ore Using Laser Induced Breakdown Spectroscopy. Minerals 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Cardoso-Fernandes, J.; Silva, J.; Dias, F.; Lima, A.; Teodoro, A.; Barrès, O.; Cauzid, J.; Perrotta, M.; Roda-Robles, E.; Ribeiro, M. Tools for Remote Exploration: A Lithium (Li) Dedicated Spectral Library of the Fregeneda–Almendra Aplite–Pegmatite Field. Data 2021, 6, 33. [Google Scholar] [CrossRef]
- Andrade, J.M.; Cristoforetti, G.; Legnaioli, S.; Lorenzetti, G.; Palleschi, V.; Shaltout, A. Classical univariate calibration and partial least squares for quantitative analysis of brass samples by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 658–663. [Google Scholar] [CrossRef]
- Wiens, R.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B.; Cousin, A.; et al. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover. Spectrochim. Acta Part B At. Spectrosc. 2013, 82, 1–27. [Google Scholar] [CrossRef]
- Fabre, C.; Cousin, A.; Wiens, R.; Ollila, A.; Gasnault, O.; Maurice, S.; Sautter, V.; Forni, O.; Lasue, J.; Tokar, R.; et al. In situ calibration using univariate analyses based on the onboard ChemCam targets: First prediction of Martian rock and soil compositions. Spectrochim. Acta Part B At. Spectrosc. 2014, 99, 34–51. [Google Scholar] [CrossRef]
- Payré, V.; Fabre, C.; Cousin, A.; Sautter, V.; Wiens, R.C.; Forni, O.; Gasnault, O.; Mangold, N.; Meslin, P.-Y.; Lasue, J.; et al. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications. J. Geophys. Res. Planets 2017, 122, 650–679. [Google Scholar] [CrossRef]
- Guezenoc, J.; Payré, V.; Fabre, C.; Syvilay, D.; Cousin, A.; Gallet-Budynek, A.; Bousquet, B. Variable selection in laser-induced breakdown spectroscopy assisted by multivariate analysis: An alternative to multi-peak fitting. Spectrochim. Acta Part B At. Spectrosc. 2019, 152, 6–13. [Google Scholar] [CrossRef]
- Gamela, R.R.; Costa, V.C.; Babos, D.V.; Araújo, A.S.; Pereira-Filho, E.R. Direct Determination of Ca, K, and Mg in Cocoa Beans by Laser-Induced Breakdown Spectroscopy (LIBS): Evaluation of Three Univariate Calibration Strategies for Matrix Matching. Food Anal. Methods 2020, 13, 1017–1026. [Google Scholar] [CrossRef]
- Grew, E.S. The Minerals of Lithium. Elements 2020, 16, 235–240. [Google Scholar] [CrossRef]
- Cardoso-Fernandes, J.; Silva, J.; Lima, A.; Teodoro, A.C.; Perrotta, M.; Cauzid, J.; Roda-Robles, E.; Ribeiro, M.A. Reflectance Spectroscopy to Validate Remote Sensing Data/Algorithms for Satellite-Based Lithium (Li) Exploration (Central East Portugal). In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications XI, Online Conference, 20 September 2020; Schulz, K., Nikolakopoulos, K.G., Michel, U., Eds.; SPIE: Bellingham, WA, USA, 2020; p. 19. [Google Scholar]
- Cardoso-Fernandes, J.; Silva, J.; Lima, A.; Teodoro, A.C.; Perrotta, M.; Cauzid, J.; Roda-Robles, E. Characterization of Lithium (Li) Minerals from the Fregeneda-Almendra Region through Laboratory Spectral Measurements: A Comparative Study. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications XI, Online Conference, 20 September 2020; Schulz, K., Nikolakopoulos, K.G., Michel, U., Eds.; SPIE: Bellingham, WA, USA, 2020; p. 20. [Google Scholar]
- Cousin, A.; Sautter, V.; Fabre, C.; Maurice, S.; Wiens, R.C. Textural and modal analyses of picritic basalts with ChemCam Laser-Induced Breakdown Spectroscopy. J. Geophys. Res. Space Phys. 2012, 117, 117. [Google Scholar] [CrossRef] [Green Version]
- Sweetapple, M.T.; Tassios, S. Laser-induced breakdown spectroscopy (LIBS) as a tool for in situ mapping and textural interpretation of lithium in pegmatite minerals. Am. Miner. 2015, 100, 2141–2151. [Google Scholar] [CrossRef]
- Linnen, R.L.; Van Lichtervelde, M.; Černý, P. Granitic Pegmatites as Sources of Strategic Metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- Popov, A.M.; Zaytsev, S.M.; Seliverstova, I.V.; Zakuskin, A.; Labutin, T.A. Matrix effects on laser-induced plasma parameters for soils and ores. Spectrochim. Acta Part B At. Spectrosc. 2018, 148, 205–210. [Google Scholar] [CrossRef]
- Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Descriptn. Space Sci. Rev. 2012, 170, 95–166. [Google Scholar] [CrossRef]
- Quarles, C.D.; Gonzalez, J.J.; East, L.J.; Yoo, J.H.; Morey, M.S.; Russo, R.E. Fluorine analysis using Laser Induced Breakdown Spectroscopy (LIBS). J. Anal. At. Spectrom. 2014, 29, 1238–1242. [Google Scholar] [CrossRef]
- McMillan, N.J.; Rees, S.; Kochelek, K.; E McManus, C. Geological Applications of Laser-Induced Breakdown Spectroscopy. Geostand. Geoanal. Res. 2014, 38, 329–343. [Google Scholar] [CrossRef]
- Kochelek, K.A.; McMillan, N.J.; McManus, C.E.; Daniel, D.L. Provenance determination of sapphires and rubies using laser-induced breakdown spectroscopy and multivariate analysis. Am. Miner. 2015, 100, 1921–1931. [Google Scholar] [CrossRef]
- Farnsworth-Pinkerton, S.; McMillan, N.J.; Dutrow, B.L.; Henry, D.J. Provenance of detrital tourmalines from Proterozoic metasedimentary rocks in the Picuris Mountains, New Mexico, using Laser-Induced Breakdown Spectroscopy. J. Geosci. 2018, 63, 193–198. [Google Scholar] [CrossRef]
Partners | Samples | Minerals |
---|---|---|
Université de Lorraine, France | Rocks, minerals, glasses, pellets | Lepidolite, spodumene, Kunzite, petalite, hindenite |
University of Western Ontario and MGS, Canada | Rocks, thin sections, glass | Lepidolite, spodumene, petalite |
Geological Service of Brazil, Brazil | Rocks | Spodumene, amblygonite |
GFZ, Germany | Powders | Li-rich pegmatite |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabre, C.; Ourti, N.E.; Mercadier, J.; Cardoso-Fernandes, J.; Dias, F.; Perrotta, M.; Koerting, F.; Lima, A.; Kaestner, F.; Koellner, N.; et al. Analyses of Li-Rich Minerals Using Handheld LIBS Tool. Data 2021, 6, 68. https://doi.org/10.3390/data6060068
Fabre C, Ourti NE, Mercadier J, Cardoso-Fernandes J, Dias F, Perrotta M, Koerting F, Lima A, Kaestner F, Koellner N, et al. Analyses of Li-Rich Minerals Using Handheld LIBS Tool. Data. 2021; 6(6):68. https://doi.org/10.3390/data6060068
Chicago/Turabian StyleFabre, Cécile, Nour Eddine Ourti, Julien Mercadier, Joana Cardoso-Fernandes, Filipa Dias, Mônica Perrotta, Friederike Koerting, Alexandre Lima, Friederike Kaestner, Nicole Koellner, and et al. 2021. "Analyses of Li-Rich Minerals Using Handheld LIBS Tool" Data 6, no. 6: 68. https://doi.org/10.3390/data6060068
APA StyleFabre, C., Ourti, N. E., Mercadier, J., Cardoso-Fernandes, J., Dias, F., Perrotta, M., Koerting, F., Lima, A., Kaestner, F., Koellner, N., Linnen, R., Benn, D., Martins, T., & Cauzid, J. (2021). Analyses of Li-Rich Minerals Using Handheld LIBS Tool. Data, 6(6), 68. https://doi.org/10.3390/data6060068