Research of Flexible Assembly of Miniature Circuit Breakers Based on Robot Trajectory Optimization
<p>Internal structure of an MCB.</p> "> Figure 2
<p>Models of the parts to be assembled.</p> "> Figure 3
<p>Posture adjustment platform.</p> "> Figure 4
<p>Robot flexible multi-gripper claw.</p> "> Figure 5
<p>Auxiliary adjustment rack for the parts.</p> "> Figure 6
<p>Flexible assembly processes for the parts: (<b>a</b>) arc extinguishing cover posture adjustment; (<b>b</b>) position adjustment of other parts.</p> "> Figure 7
<p>Positioning carrier with adjusted parts.</p> "> Figure 8
<p>Schematic diagram of the robot connecting rod structure.</p> "> Figure 9
<p>Improve PSO process.</p> "> Figure 10
<p>Schematic diagram of robot segmentation.</p> "> Figure 11
<p>Joint motions before optimization: (<b>a</b>) Position curve; (<b>b</b>) Velocity curve; (<b>c</b>) Acceleration curve; (<b>d</b>) Jerk curve.</p> "> Figure 12
<p>Comparison of iterative process before and after PSO algorithm improvement.</p> "> Figure 13
<p>Joint motions after optimization: (<b>a</b>) Position curve; (<b>b</b>) Velocity curve; (<b>c</b>) Acceleration curve; (<b>d</b>) Jerk curve.</p> "> Figure 14
<p>Time-optimal trajectory planning by the improved PSO: (<b>a</b>) section AB <span class="html-italic">t</span><sub>1</sub> trajectory; (<b>b</b>) section AB <span class="html-italic">t</span><sub>2</sub> trajectory; (<b>c</b>) section AB <span class="html-italic">t</span><sub>3</sub> trajectory.</p> "> Figure 15
<p>Experimental platform of posture adjustment.</p> "> Figure 16
<p>Flexible assembly experiment.</p> ">
Abstract
:1. Introduction
2. Construction of MCB Flexible Assembly Platform
2.1. Internal Structure of an MCB
2.2. Process of Robotic Flexible Assembly
3. Robot Kinematic Modeling
3.1. Robot Kinematic Analysis
3.2. Polynomial Interpolation Function Construction
4. Particle Swarm Time Optimal Trajectory Planning
4.1. Time-Optimal Trajectory Planning
4.2. Improved PSO Algorithm
5. Algorithm Simulation
6. Experiment on the Assembly Platform
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rudsari, F.N.; Razi-Kazemi, A.A.; Shoorehdeli, M.A. Fault Analysis of High-Voltage Circuit Breakers Based on Coil Current and Contact Travel Waveforms Through Modified SVM Classifier. IEEE Trans. Power Deliv. 2019, 34, 1608–1618. [Google Scholar] [CrossRef]
- Sun, S.; Wen, Z.; Du, T.; Wang, J.; Tang, Y.; Gao, H. Remaining Life Prediction of Conventional Low-Voltage Circuit Breaker Contact System Based on Effective Vibration Signal Segment Detection and MCCAE-LSTM. IEEE Sens. J. 2021, 21, 21862–21871. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, F.; Qu, X.; Liu, B. An Online Real-Time Path Compensation System for Industrial Robots Based on Laser Tracker. Int. J. Adv. Robot. Syst. 2016, 13, 1729881416663366. [Google Scholar] [CrossRef]
- He, M.; Wu, X.; Shao, G.; Wen, Y.; Liu, T. A Semiparametric Model-Based Friction Compensation Method for Multi-Joint Industrial Robot. J. Dyn. Syst. Meas. Control 2022, 144, 034501. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, Q. Multi-Objective Mobile Robot Path Planning Based on Improved Genetic Algorithm. In Proceedings of the 2010 International Conference on Intelligent Computation Technology and Automation, Changsha, China, 11–12 May 2010. [Google Scholar]
- Jun, H.; Li, H. Trajectory Planning and Simulation of Robot in Joint Coordinate System. J. Nanjing Univ. Sci. Technol. 2000, 24, 540–543. [Google Scholar]
- Fu, X.G.; Yan, G.Z. Trajectory Planning and Simulating on 7-DOF Robot Applied to Nuclear Industry. Acta Simulata Syst. Sin. 2005, 17, 1948–1950. [Google Scholar]
- Abu-Dakka, F.J.; Valero, F.J.; SuñEr, J.L.; Mata, V. A Direct Approach to Solving Trajectory Planning Problems Using Genetic Algorithms with Dynamics Considerations in Complex Environments. Robotica 2015, 33, 669–683. [Google Scholar] [CrossRef]
- Choi, Y.K.; Park, J.H.; Kim, H.S. Optimal Trajectory Planning and Sliding Mode Control for Robots Using Evolution Strategy. Robotica 2000, 18, 423–428. [Google Scholar] [CrossRef]
- Zhu, S. Time-Optimal and Jerk-Continuous Trajectory Planning Algorithm for Manipulators. J. Mech. Eng. 2010, 46, 456–462. [Google Scholar] [CrossRef]
- Bukata, L.; Šůcha, P.; Hanzálek, Z. Optimizing Energy Consumption of Robotic Cells by a Branch & Bound Algorithm. Comput. Oper. Res. 2019, 102, 52–66. [Google Scholar] [CrossRef]
- Rubio, F.; Llopis-Albert, C.; Valero, F.; Suñer, J.L. Industrial Robot Efficient Trajectory Generation without Collision through the Evolution of the Optimal Trajectory. Robot. Auton. Syst. 2016, 86, 106–112. [Google Scholar] [CrossRef]
- Huang, T.; Zhao, D.; Cao, Z.-C. Trajectory Planning of Optical Polishing Based on Optimized Implementation of Dwell Time. Precis. Eng. 2020, 62, 223–231. [Google Scholar] [CrossRef]
- Kim, K.W.; Kim, H.S.; Choi, Y.K.; Park, J.H. Optimization of Cubic Polynomial Joint Trajectories and Sliding Mode Controllers for Robots Using Evolution Strategy. In Proceedings of the IECON’97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No. 97CH36066), New Orleans, LA, USA, 14 November 1997. [Google Scholar]
- Ma, Y.; Liang, Y. An Obstacle Avoidance Algorithm for Manipulators Based on Six-Order Polynomial Trajectory Planning. Xibei Gongye Daxue Xuebao/J. Northwest. Polytech. Univ. 2020, 38, 392–400. [Google Scholar] [CrossRef]
- Trefethen, L.N. Approximation Theory and Approximation Practice, Extended Edition; Other Titles in Applied Mathematics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2019; ISBN 978-1-61197-593-2. [Google Scholar]
- Guan, C.; Wang, F.; Zhang, D.Y. NURBS-Based Time-Optimal Trajectory Planning on Robotic Excavators. J. Jilin Univ. Technol. Ed. 2015, 45, 540–546. [Google Scholar]
- Liang, H.B.; Wang, Y.Z.; Li, X. Research and Implementation of NURBS Interpolation Algorithm for Adaptive Feed Speed. Comput. Integr. Manuf. Syst. 2006, 12, 428. [Google Scholar]
- Huang, J.; Hu, P.; Wu, K.; Zeng, M. Optimal Time-Jerk Trajectory Planning for Industrial Robots. Mech. Mach. Theory 2018, 121, 530–544. [Google Scholar] [CrossRef]
- Ajayi, E.; Obe, O. Genetic Algorithm Based Optimal Trajectories Planning for Robot Manipulators on Assigned Paths. Int. J. Emerg. Trends Technol. Comput. Sci. 2020, 8, 4888–4892. [Google Scholar] [CrossRef]
- Yan, C.; Song, L.I.; Liu, Y. Tool Axis Trajectory Planning for Flank Milling with Conical Tools Based on Particle Swarm Optimization. Comput. Integr. Manuf. Syst. 2016. [Google Scholar] [CrossRef]
- Yang, H.; Yang, Z.; Yang, Y.; Zhang, L. An Improved Particle Swarm Optimization Algorithm Based on Simulated Annealing. In Proceedings of the 2014 10th International Conference on Natural Computation (ICNC), Xiamen, China, 19–21 August 2014. [Google Scholar]
- Shen, L.; Wang, Y.; Liu, K.; Yang, Z.; Shi, X.; Yang, X.; Jing, K.; Talley, W. Synergistic Path Planning of Multi-UAVs for Air Pollution Detection of Ships in Ports. Transp. Res. Part E Logist. Transp. Rev. 2020, 144, 102128. [Google Scholar] [CrossRef]
- Shi, B.; Xu, J. Time-Optimal Trajectory Planning of Industrial Robot Based on Improved Particle Swarm Optimization Algorithm. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–30 July 2020; pp. 3683–3688. [Google Scholar]
Joint/i | θi/° | di/m | ai/m | αi/° |
---|---|---|---|---|
1 | θ1 | 0 | 0 | 0 |
2 | θ2 | 0 | 0.04 | −π/2 |
3 | θ3 | 0 | 0.275 | 0 |
4 | θ4 | 0.28 | 0.025 | −π/2 |
5 | θ5 | 0 | 0 | π/2 |
6 | θ6 | 0 | 0 | −π/2 |
Point/Xi | Joint 1 | Joint 2 | Joint 3 | Joint 4 | Joint 5 | Joint 6 |
---|---|---|---|---|---|---|
X1/(°) | 0 | −35.1 | −29.8 | 0 | −25.1 | 0 |
X2/(°) | −24 | −37.7 | −30.6 | 0 | −21.7 | 23.96 |
X3/(°) | −43.7 | −52.2 | −4.14 | 0 | −33.6 | 135.3 |
X4/(°) | −30 | −58.3 | −2.11 | 0 | −29.6 | 125 |
ti/(s) | t1 | t2 | t3 |
---|---|---|---|
Interpolation time | 3.0 | 6.0 | 3.0 |
Joint/i | Joint 1 | Joint 2 | Joint 3 | Joint 4 | Joint 5 | Joint 6 |
---|---|---|---|---|---|---|
p/(o) | −43.7 | −58.3 | −30.6 | 0.00 | −33.6 | 135.3 |
v/(rad/s) | 0.90 | 0.90 | 0.90 | 0.90 | 0.95 | 1.00 |
a/(rad/s2) | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 1.00 |
a’/(rad/s3) | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Joint/i | ti1/s | ti2/s | ti3/s | |||
---|---|---|---|---|---|---|
Standard | Improved | Standard | Improved | Standard | Improved | |
Joint1 | 3.00 | 2.79 | 1.43 | 1.29 | 1.90 | 1.68 |
Joint2 | 0.38 | 0.30 | 0.68 | 0.54 | 0.70 | 0.56 |
Joint3 | 0.63 | 0.46 | 1.98 | 1.67 | 0.58 | 0.45 |
Joint4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Joint5 | 0.81 | 0.67 | 1.15 | 0.88 | 0.85 | 0.71 |
Joint6 | 1.95 | 1.88 | 3.34 | 3.31 | 1.85 | 1.79 |
Optimal | 3.00 | 2.79 | 3.34 | 3.31 | 1.90 | 1.79 |
Section | No Optimization | Standard PSO | Standard GA | Standard COA | Improved PSO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t1 | t2 | t3 | t1 | t2 | t3 | t1 | t2 | t3 | t1 | t2 | t3 | t1 | t2 | t3 | |
AB | 3 | 6 | 3 | 3.00 | 2.79 | 3.34 | 3.04 | 2.53 | 3.77 | 3.43 | 3.01 | 2.88 | 3.31 | 1.90 | 1.79 |
BC | 8 | 5 | 8 | 4.03 | 1.80 | 7.31 | 5.13 | 3.22 | 6.97 | 4.75 | 2.06 | 5.83 | 4.10 | 1.63 | 5.80 |
CD | 3 | 6 | 8 | 3.00 | 5.49 | 4.11 | 2.89 | 4.51 | 4.34 | 2.51 | 5.17 | 4.40 | 2.46 | 4.89 | 3.30 |
DE | 7 | 3 | 3 | 3.54 | 1.55 | 1.27 | 4.01 | 1.70 | 1.62 | 3.87 | 1.50 | 1.11 | 2.82 | 1.28 | 1.05 |
Part | Section | No Optimization | Standard PSO | Improved PSO |
---|---|---|---|---|
Arc extinguisher | AB | 9.34 | 16.43 | 9.08 |
BC | 15.36 | 14.54 | 12.85 | |
CD | 11.06 | 4.64 | 5.85 | |
DE | 12.52 | 8.03 | 12.75 | |
Total | 48.28 | 43.63 | 40.53 | |
Big-U rod | AB | 12.76 | 13.88 | 12.68 |
BC | 11.84 | 9.00 | 9.05 | |
CD | 15.04 | 14.63 | 11.23 | |
DE | 11.06 | 11.39 | 14.45 | |
Total | 50.70 | 48.89 | 47.40 | |
Yoke | AB | 10.22 | 13.50 | 7.43 |
BC | 14.64 | 11.90 | 15.33 | |
CD | 12.18 | 12.62 | 10.30 | |
DE | 12.10 | 9.65 | 8.33 | |
Total | 49.14 | 47.68 | 41.38 | |
Handle | AB | 12.48 | 12.65 | 9.90 |
BC | 13.90 | 9.29 | 10.45 | |
CD | 12.86 | 9.36 | 9.75 | |
DE | 8.34 | 11.68 | 9.68 | |
Total | 47.58 | 42.98 | 39.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Shu, L.; Wu, Z.; Chen, X.; Zhang, G.; Cai, Z. Research of Flexible Assembly of Miniature Circuit Breakers Based on Robot Trajectory Optimization. Algorithms 2022, 15, 269. https://doi.org/10.3390/a15080269
Han Y, Shu L, Wu Z, Chen X, Zhang G, Cai Z. Research of Flexible Assembly of Miniature Circuit Breakers Based on Robot Trajectory Optimization. Algorithms. 2022; 15(8):269. https://doi.org/10.3390/a15080269
Chicago/Turabian StyleHan, Yan, Liang Shu, Ziran Wu, Xuan Chen, Gaoyan Zhang, and Zili Cai. 2022. "Research of Flexible Assembly of Miniature Circuit Breakers Based on Robot Trajectory Optimization" Algorithms 15, no. 8: 269. https://doi.org/10.3390/a15080269
APA StyleHan, Y., Shu, L., Wu, Z., Chen, X., Zhang, G., & Cai, Z. (2022). Research of Flexible Assembly of Miniature Circuit Breakers Based on Robot Trajectory Optimization. Algorithms, 15(8), 269. https://doi.org/10.3390/a15080269