Longitudinal Chest X-ray Scores and their Relations with Clinical Variables and Outcomes in COVID-19 Patients
<p>Examples of CXRs with different geographic extent and opacity scores. CXRs of COVID-19 positive patients were scored (range: 0–8) based on the extent and degree of opacities (see Methods).</p> "> Figure 2
<p>(<b>A</b>) Geographic extent (Geo) and (<b>B</b>) opacity (Opa) CXR scores of GF patients taken at emergency department admission and outcome stratified by survivors (<span class="html-italic">N</span> = 228) and non-survivors (<span class="html-italic">N</span> = 30). * <span class="html-italic">p</span> < 0.05. Error bars: SEM.</p> "> Figure 3
<p>(<b>A</b>) Geographic extent (Geo) and (<b>B</b>) opacity (Opa) CXR scores of IMV patients taken at intubation and outcome stratified by survivors (<span class="html-italic">N</span> = 118) and non-survivors (<span class="html-italic">N</span> = 59). * <span class="html-italic">p</span> < 0.05. Error bars: SEM.</p> "> Figure 4
<p>(<b>A</b>) geographic extent and (<b>B</b>) opacity chest X-ray scores taken on five consecutive days. * denotes significant difference in score value between survivors and non-survivors at a time point. The numbers show the sample sizes for each group at each time point. From two-way repeated measures ANOVA, the time and group*time had significant effects (<span class="html-italic">p</span> < 0.05). Significant differences from <span class="html-italic">t</span>-tests with the Bonferroni–Holm correction are indicated as * <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>Histograms of days in the hospital for (<b>A</b>) GF group: survivors (<span class="html-italic">N</span> = 228) and non-survivors (<span class="html-italic">N</span> = 30), and (<b>B</b>) invasive mechanical ventilation (IMV) group: survivors (<span class="html-italic">N</span> = 85) and non-survivors (<span class="html-italic">N</span> = 58).</p> "> Figure 6
<p>Histograms of days (<b>A</b>) on and (<b>B</b>) off invasive mechanical ventilation (IMV) for survivors (<span class="html-italic">N</span> = 85) and non-survivors (<span class="html-italic">N</span> = 58).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Characteristics
3.2. CXR Scores
3.3. Histograms of Days in the Hospital and Duration on Ventilator
3.4. Association of CXR with Laboratory Values and Outcomes
4. Discussion
4.1. Temporal Progression of CXR Scores
4.2. Geographic versus Opacity Scores
4.3. CXRs Correlation with Other Clinical Variables
4.4. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Coronavirus Disease 2019 | COVID-19 |
portable chest X-ray | pCXR |
reverse transcription polymerase chain reaction | RT-PCR |
invasive mechanical ventilation | IMV |
general floor | GF |
References
- Johns Hopkin University. Available online: https://coronavirus.jhu.edu/map.html (accessed on 14 February 2023).
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Yu, C.; Qu, J.; Zhang, L.; Jiang, S.; Huang, D.; Chen, B.; Zhang, Z.; Guan, W.; Ling, Z.; et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1275–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J. Clin. Microbiol. 2020, 58, e00512–e00520. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [Green Version]
- Ullah, N.; Khan, J.A.; El-Sappagh, S.; El-Rashidy, N.; Khan, M.S. A Holistic Approach to Identify and Classify COVID-19 from Chest Radiographs, ECG, and CT-Scan Images Using ShuffleNet Convolutional Neural Network. Diagnostics 2023, 13, 162. [Google Scholar] [CrossRef]
- Ullah, N.; Khan, J.A.; Almakdi, S.; Khan, M.S.; Alshehri, M.; Alboaneen, D.; Raza, A. A Novel CovidDetNet Deep Learning Model for Effective COVID-19 Infection Detection Using Chest Radiograph Images. Appl. Sci. 2022, 12, 6269. [Google Scholar] [CrossRef]
- Hussain, L.; Nguyen, T.; Li, H.; Abbasi, A.A.; Lone, K.J.; Zhao, Z.; Zaib, M.; Chen, A.; Duong, T.Q. Machine-learning classification of texture features of portable chest X-ray accurately classifies COVID-19 lung infection. Biomed. Eng. Online 2020, 19, 88. [Google Scholar] [CrossRef]
- Sailunaz, K.; Ozyer, T.; Rokne, J.; Alhajj, R. A survey of machine learning-based methods for COVID-19 medical image analysis. Med. Biol. Eng. Comput. 2023, 1–41. [Google Scholar] [CrossRef]
- Majrashi, N.A.A. The value of chest X-ray and CT severity scoring systems in the diagnosis of COVID-19: A review. Front. Med. 2022, 9, 1076184. [Google Scholar] [CrossRef]
- Cohen, J.P.; Morrison, P.; Dao, L.; Roth, K.; Duong, T.Q.; Ghassemi, M. COVID-19 image data collection: Prospective predictions are the future. J. Mach. Learn. Biomed. Imaging (MELBA) 2020, 2, 1–38. [Google Scholar]
- Cohen, J.P.; Dao, L.; Roth, K.; Morrison, P.; Bengio, Y.; Abbasi, A.F.; Shen, B.; Mahsa, H.K.; Ghassemi, M.; Li, H.; et al. Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning. Cureus 2020, 12, e9448. [Google Scholar] [CrossRef]
- Eligulashvili, A.; Darrell, M.; Miller, C.; Lee, J.; Congdon, S.; Lee, J.S.; Hsu, K.; Yee, J.; Hou, W.; Islam, M.; et al. COVID-19 Patients in the COVID-19 Recovery and Engagement (CORE) Clinics in the Bronx. Diagnostics 2022, 13, 119. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Shen, B.; Abbasi, A.; Hoshmand-Kochi, M.; Li, H.; Duong, T.Q. Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs. PLoS ONE 2020, 15, e0236621. [Google Scholar] [CrossRef]
- Kikkisetti, S.; Zhu, J.; Shen, B.; Li, H.; Duong, T.Q. Deep-learning convolutional neural networks with transfer learning accurately classify COVID-19 lung infection on portable chest radiographs. PeerJ 2020, 8, e10309. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, A.; Chung, M.; Bernheim, A.; Eber, C. Portable chest X-ray in coronavirus disease-19 (COVID-19): A pictorial review. Clin. Imaging 2020, 64, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Northwell COVID-19 Research Consortium. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Capaccione, K.M.; Li, G.; Luk, L.; Widemon, R.S.; Rahman, O.; Beylergil, V.; Mitchell, R.; D’Souza, B.M.; Leb, J.S.; et al. The role of initial chest X-ray in triaging patients with suspected COVID-19 during the pandemic. Emerg. Radiol. 2020, 27, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Toussie, D.; Voutsinas, N.; Finkelstein, M.; Cedillo, M.A.; Manna, S.; Maron, S.Z.; Jacobi, A.; Chung, M.; Bernheim, A.; Eber, C.; et al. Clinical and Chest Radiography Features Determine Patient Outcomes in Young and Middle Age Adults with COVID-19. Radiology 2020, 297, E197–E206. [Google Scholar] [CrossRef]
- Borghesi, A.; Zigliani, A.; Golemi, S.; Carapella, N.; Maculotti, P.; Farina, D.; Maroldi, R. Chest X-ray severity index as a predictor of in-hospital mortality in coronavirus disease 2019: A study of 302 patients from Italy. Int. J. Infect. Dis. 2020, 96, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, D.; Albanesi, M.; Cavigli, E.; Moroni, C.; Bindi, A.; Luvara, S.; Lucarini, S.; Busoni, S.; Mazzoni, L.N.; Miele, V. Chest X-ray in new Coronavirus Disease 2019 (COVID-19) infection: Findings and correlation with clinical outcome. Radiol. Med. 2020, 125, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Li, M.D.; Arun, N.T.; Gidwani, M.; Chang, K.; Deng, F.; Little, B.P.; Mendoza, D.P.; Lang, M.; Lee, S.I.; O’Shea, A.; et al. Automated Assessment and Tracking of COVID-19 Pulmonary Disease Severity on Chest Radiographs using Convolutional Siamese Neural Networks. Radiol. Artif. Intell. 2020, 2, e200079. [Google Scholar] [CrossRef] [PubMed]
- Francone, M.; Iafrate, F.; Masci, G.M.; Coco, S.; Cilia, F.; Manganaro, L.; Panebianco, V.; Andreoli, C.; Colaiacomo, M.C.; Zingaropoli, M.A.; et al. Chest CT score in COVID-19 patients: Correlation with disease severity and short-term prognosis. Eur. Radiol. 2020, 30, 6808–6817. [Google Scholar] [CrossRef]
- Taylor, E.; Haven, K.; Reed, P.; Bissielo, A.; Harvey, D.; McArthur, C.; Bringans, C.; Freundlich, S.; Ingram, R.J.; Perry, D.; et al. A chest radiograph scoring system in patients with severe acute respiratory infection: A validation study. BMC Med. Imaging 2015, 15, 61. [Google Scholar] [CrossRef] [Green Version]
- Warren, M.A.; Zhao, Z.; Koyama, T.; Bastarache, J.A.; Shaver, C.M.; Semler, M.W.; Rice, T.W.; Matthay, M.A.; Calfee, C.S.; Ware, L.B. Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. Thorax 2018, 73, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.Y.F.; Lam, H.Y.S.; Fong, A.H.; Leung, S.T.; Chin, T.W.; Lo, C.S.Y.; Lui, M.M.; Lee, J.C.Y.; Chiu, K.W.; Chung, T.W.; et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology 2020, 296, E72–E78. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Hu, S.; Fan, R.; Liu, Z.; Yin, X.; Wang, Q.; Lv, Q.; Cai, Z.; Li, H.; Hu, Y. ACP risk grade: A simple mortality index for patients with confirmed or suspected severe acute respiratory syndrome coronavirus 2 disease (COVID-19) during the early stage of outbreak in Wuhan, China. medRxiv 2020. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, L.; Cai, J.; Lei, F.; Qin, J.J.; Xie, J.; Liu, Y.M.; Zhao, Y.C.; Huang, X.; Lin, L.; et al. Association of Inpatient Use of Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers with Mortality among Patients with Hypertension Hospitalized with COVID-19. Circ. Res. 2020, 26, 1671–1681. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Hungerford, D.; Chen, H.; Abrams, S.T.; Li, S.; Li, X.; Tong, Z.; Du, B.; Qiu, H.; Toh, C.H. Development and external validation of a prognostic multivariable model on admission for hospitalized patients with COVID-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Jiang, X.; Coffee, M.; Bari, A.; Wang, J.; Jiang, X.; Huang, J.; Shi, J.; Dai, J.; Cai, J.; Zhang, T.; et al. Towards an Artificial Intelligence Framework for Data-Driven Prediction of Coronavirus Clinical Severity. Comput. Mater. Contin. 2020, 63, 537–551. [Google Scholar] [CrossRef]
- Ji, D.; Zhang, D.; Xu, J.; Chen, Z.; Yang, T.; Zhao, P.; Chen, G.; Cheng, G.; Wang, Y.; Bi, J.; et al. Prediction for Progression Risk in Patients with COVID-19 Pneumonia: The CALL Score. Clin. Infect. Dis. 2020, 71, 1393–1399. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Yao, N.; Qiu, Y. Comparing Rapid Scoring Systems in Mortality Prediction of Critically Ill Patients with Novel Coronavirus Disease. Acad. Emerg. Med. 2020, 27, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.S.; Ge, P.; Jiang, C.; Zhang, Y.; Li, X.; Zhao, Z.; Zhang, L.; Duong, T.Q. Deep-learning artificial intelligence analysis of clinical variables predicts mortality in COVID-19 patients. J. Am. Coll. Emerg. Physicians Open 2020, 1, 1364–1373. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, A.; Hou, W.; Graham, J.M.; Li, H.; Richman, P.S.; Thode, H.C.; Singer, A.J.; Duong, T.Q. Prediction model and risk scores of ICU admission and mortality in COVID-19. PLoS ONE 2020, 15, e0236618. [Google Scholar] [CrossRef]
- Lam, K.W.; Chow, K.W.; Vo, J.; Hou, W.; Li, H.; Richman, P.S.; Mallipattu, S.K.; Skopicki, H.A.; Singer, A.J.; Duong, T.Q. Continued in-hospital ACE inhibitor and ARB Use in hypertensive COVID-19 patients is associated with positive clinical outcomes. J. Infect. Dis. 2020, 222, 1256–1264. [Google Scholar] [CrossRef]
- Hou, W.; Zhao, Z.; Chen, A.; Li, H.; Duong, T.Q. Machining learning predicts the need for escalated care and mortality in COVID-19 patients from clinical variables. Int. J. Med. Sci. 2021, 18, 1739–1745. [Google Scholar] [CrossRef]
- Li, X.; Ge, P.; Zhu, J.; Li, H.; Graham, J.; Singer, A.; Richman, P.S.; Duong, T.Q. Deep learning prediction of likelihood of ICU admission and mortality in COVID-19 patients using clinical variables. PeerJ 2020, 8, e10337. [Google Scholar] [CrossRef]
- Lu, J.Y.; Wilson, J.; Hou, W.; Fleysher, R.; Herold, B.C.; Herold, K.C.; Duong, T.Q. Incidence of new-onset in-hospital and persistent diabetes in COVID-19 patients: Comparison with influenza. EBioMedicine 2023, 90, 104487. [Google Scholar] [CrossRef]
- Lu, J.Q.; Lu, J.Y.; Wang, W.; Liu, Y.; Buczek, A.; Fleysher, R.; Hoogenboom, W.S.; Zhu, W.; Hou, W.; Rodriguez, C.J.; et al. Clinical predictors of acute cardiac injury and normalization of troponin after hospital discharge from COVID-19. EBioMedicine 2022, 76, 103821. [Google Scholar] [CrossRef]
- Duanmu, H.; Ren, T.; Li, H.; Mehta, N.; Singer, A.J.; Levsky, J.M.; Lipton, M.L.; Duong, T.Q. Deep learning of longitudinal chest X-ray and clinical variables predicts duration on ventilator and mortality in COVID-19 patients. Biomed. Eng. Online 2022, 21, 77. [Google Scholar] [CrossRef]
GF Patients, No. (%) | IMV Patients, No. (%) | |||||
---|---|---|---|---|---|---|
Survivors (N = 224) | Non-Survivors (N = 28) | p-Value | Survivors (N = 92) | Non-Survivors (N = 56) | p-Value | |
Demographics | ||||||
Age, median (IQR), y | 56.0 (44.0, 69.0) | 83.0 (79.0, 88.0) | <0.0001 | 57 (48.5, 66.0) | 69 (61.5, 74.0) | <0.0001 |
Sex | 0.9641 | 0.0264 | ||||
Male | 127 (56.7%) | 16 (57.1%) | 58 (63.0%) | 45 (80.3%) | ||
Female | 97(43.3%) | 12 (42.8%) | 34 (36.9%) | 11 (19.6%) | ||
Ethnicity | 0.0006 | 0.1617 | ||||
Hispanic/Latino | 72 (32.1%) | 1 (3.5%) | 34 (36.9%) | 13 (23.2%) | ||
Non-Hispanic/Latino | 115 (51.3%) | 25 (89.2%) | 42 (45.6%) | 34 (60.7%) | ||
Unknown | 37 (16.5%) | 2 (7.1%) | 16 (17.3%) | 9 (16.0%) | ||
Race | 0.0010 | 0.3156 | ||||
Caucasian | 111(49.5%) | 24 (85.7%) | 36 (39.1%) | 25 (44.6%) | ||
African American | 11 (4.9%) | 1 (3.5%) | 4 (4.3%) | 2 (3.5%) | ||
Asian | 5 (2.2%) | 2 (7.1%) | 6 (6.5%) | 5 (88.9%) | ||
Others | 97 (43.3%) | 1 (3.5%) | 46 (50.0%) | 24 (42.8%) | ||
Comorbidities | ||||||
Smoking | 33 (14.7%) | 9 (32.1%) | 0.1344 | 14 (15.2%) | 24 (43.6%) | 0.0015 |
Diabetes | 56 (25.0%) | 8 (28.57) | 0.6823 | 25 (27.1%) | 18 (32.1%) | 0.5185 |
Hypertension | 85 (37.95%) | 20 (71.4%) | 0.0007 | 36 (39.1%) | 35 (62.5%) | 0.0058 |
Asthma | 15 (6.7%) | 0 (0.0%) | 0.1580 | 10 (10.8%) | 2 (3.5%) | 0.1147 |
COPD | 11 (4.9%) | 9 (32.1%) | <0.0001 | 3 (3.2%) | 5 (8.9%) | 0.1392 |
Coronary artery disease | 27 (12.05%) | 10 (35.7%) | 0.0009 | 6 (6.5%) | 14 (25.0%) | 0.0014 |
Heart failure | 6 (2.6%) | 11 (39.2%) | <0.0001 | 0 (0.0%) | 7 (12.5%) | 0.0005 |
Cancer | 14 (6.2%) | 3 (10.7%) | 0.3746 | 2 (2.1%) | 3 (5.3%) | 0.2986 |
Immunosuppression | 15 (6.7%) | 2 (7.1%) | 0.9292 | 6 (6.5%) | 2 (3.5%) | 0.4414 |
Chronic kidney disease | 17 (7.5%) | 7 (25.0%) | 0.0031 | 4 (4.3%) | 7 (12.5%) | 0.0667 |
(A) | GF Patients at ED Admission | GF Patients at Outcome | ||||
Survivors (N = 224) | Non-Survivors (N = 28) | p-Value | Survivors (N = 43) | Non-Survivors (N = 13) | p-Value | |
Vital signs, median (IQR) | ||||||
Heart rate, bpm | 88 (79, 97) | 84 (74, 90) | 0.1365 | 84 (75, 92) | 80 (75, 99) | 0.6572 |
Respiratory rate, rate/min | 18 (17,21) | 23 (18,28) | 0.0001 | 18.4 (17.2, 21.5) | 23 (19.3, 24.5) | 0.0628 |
SpO2, % | 95 (94, 96) | 94 (90, 96) | 0.0001 | 94 (93, 96) | 93 (92, 95) | 0.129 |
SBP, mmHg | 125 (116, 139) | 128 (115, 135) | 0.3286 | 123 (116, 132) | 130 (124, 136) | 0.1679 |
Temperature, °C | 37.3 (36.9, 37.7) | 36.9 (36.7, 37.2) | 0.0131 | 37.0 (36.7, 37.4) | 37.1 (36.7, 37.2) | 0.8652 |
Laboratory findings at admission, median (IQR) | ||||||
Alanine aminotransferase, U/L | 29 (17, 50) | 22 (16, 46.5) | 0.3412 | 39 (17, 84) | 20.5 (14, 47) | 0.1536 |
Brain natriuretic peptide, ng/L | 179 (31.5, 732) | 1680 (673, 4726) | 0.0064 | 198 (50, 1027) | 1723 (430, 5975) | 0.7402 |
C-reactive protein, mg/L | 6.2 (22.95, 11.6) | 12.8 (8.2, 20.15) | 0.0001 | 7.3 (2.6, 16.6) | 13.35 (7.2, 21.9) | 0.0900 |
D-dimer, nmol/L | 279 (179, 455) | 806.5 (337, 1263) | 0.0001 | 440 (256, 757) | 947 (629, 1229) | 0.0561 |
Ferritin, µg/L | 639.95 (272, 1385) | 726.9 (375, 1445) | 0.8735 | 817 (493, 1633) | 707(442, 928) | 0.8140 |
Lactate dehydrogenase, U/L | 323 (257, 393) | 425 (302, 585) | 0.0002 | 392 (276, 478) | 388 (302, 540) | 0.2708 |
Leukocytes × 109/L | 6.675 (5.2, 8.5) | 8.3 (6.45, 10.5) | 0.0179 | 7.6 (5, 10.1) | 8.9 (5.2, 11.7) | 0.3403 |
Lymphocytes % | 14.675 (10.2, 21) | 7.75 (5.7, 11.8) | 0.0001 | 15.9 (10, 21) | 7.9 (5.5, 10.6) | 0.0035 |
Procalcitonin, ng/mL | 0.1 (0.1, 0.3) | 0.3 (0.2, 1.4) | 0.0150 | 0.2 (0.1, 0.4) | 0.3 (0.2, 1.7) | 0.3562 |
Troponin, µg/L | 0.04 (0.01, 0.3) | 0.055 (0.01, 0.1) | 0.3782 | 0.01 (0.001, 0.03) | 0.12 (0.01, 0.1) | 0.8844 |
(B) | IMV Group at Intubation | IMV Group at Outcome | ||||
Survivors (N = 92) | Non-Survivors (N = 56) | p-Value | Survivors (N = 92) | Non-Survivors (N = 56) | p-Value | |
Vital signs, median (IQR) | ||||||
Heart rate, bpm | 92 (82, 100) | 86 (79, 95) | 0.0806 | 85 (72, 95) | 87 (75, 103) | 0.1164 |
Respiratory rate, rate/min | 26 (23, 30) | 26 (23, 30) | 0.7798 | 22 (20, 27) | 26.5 (22.3, 29.8) | 0.0214 |
SpO2, % | 94 (93, 96) | 94 (92, 95) | 0.0541 | 96 (95, 98) | 94 (91, 97) | 0.0001 |
SBP, mmHg | 126 (116, 136) | 125 (118, 137) | 0.4545 | 123 (113, 135) | 123 (109, 133) | 0.6998 |
Temperature, °C | 37.2 (36.9, 37.9) | 37.1 (36.9, 37.5) | 0.1032 | 37 (36.7, 37.5) | 37 (36.9, 37.7) | 0.1666 |
Laboratory findings at admission, median (IQR) | ||||||
Alanine aminotransferase, U/L | 40 (27, 71.5) | 40 (22, 59.75) | 0.4866 | 51 (31, 89) | 39.5 (23, 75.5) | 0.0765 |
Brain natriuretic peptide, ng/L | 149.5 (48, 624) | 812 (156.5, 2557) | 0.1794 | 161 (65, 624) | 1063.5 (215, 3315) | 0.1284 |
C-reactive protein, mg/L | 16.5 (10.0, 26.9) | 17.4 (10.1, 24.7) | 0.6244 | 4.8 (1.2, 10.1) | 11 (5.85, 25.6) | 0.0001 |
D-dimer, nmol/L | 513.5 (341, 1125) | 791 (494, 2701) | 0.0034 | 777 (427, 1430) | 1284 (826, 3182) | 0.0018 |
Ferritin, µg/L | 1223 (719, 2156) | 1257 (639, 2069) | 0.5921 | 957 (692, 1624) | 1330 (860, 2169) | 0.1040 |
Lactate dehydrogenase, U/L | 5488 (421, 656) | 617.75 (441, 765) | 0.1065 | 437 (334, 554) | 585 (458, 744) | 0.0475 |
Leukocytes × 109/L | 9.15 (6.95, 12.45) | 10.82 (8.15, 14.61) | 0.0317 | 11.1 (7.9, 14.3) | 16.9 (11.3, 23.3) | 0.0001 |
Lymphocytes % | 8.05 (5.1, 12.6) | 6.45 (3.75, 10.45) | 0.9114 | 7.9 (4.4, 12.3) | 3.65 (2.1, 8.5) | 0.0375 |
Procalcitonin, ng/mL | 0.3 (0.2, 0.625) | 0.5 (0.25, 1.45) | 0.8873 | 0.2 (0.1, 0.06) | 0.8 (0.35, 4.35) | 0.0200 |
Troponin, µg/L | 0.01 (0.001, 0.03) | 0.12 (0.01, 0.075) | 0.142 | 0.01 (0.001, 0.04) | 0.012 (0.005, 0.075) | 0.0742 |
Variable | Geographic Scores | Opacity Scores |
---|---|---|
LDH | 0.41 * | 0.31 * |
RR | 0.34 * | 0.30 * |
D-dimer | 0.31 * | 0.19 * |
CRP | 0.30 * | 0.23 * |
procalcitonin | 0.27 * | 0.18 * |
ferritin | 0.23 * | 0.14 * |
SpO2 | −0.19 * | −0.25 * |
lymphocyte | −0.19 * | −0.11 * |
WBC | 0.17 * | 0.16 |
troponin | −0.04 | −0.08 * |
HR | −0.02 | 0.07 * |
SBP | −0.05 | −0.04 |
temperature | −0.05 | 0.000 |
BNP | 0.03 | −0.06 |
Geographic Scores | Opacity Scores | ||
---|---|---|---|
Hospitalization duration | GF survivors | 0.06 | 0.11 |
GF non-survivors | −0.34 | −0.27 | |
Hospitalization duration | IMV survivors | 0.33 * | 0.10 |
IMV non-survivors | 0.49 * | 0.36 * | |
IMV duration | IMV survivors | −0.09 | −0.15 |
IMV non-survivors | 0.35 * | 0.33 * | |
Post-IMV duration | IMV survivors | 0.11 | 0.09 |
IMV non-survivors | 0.10 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, B.; Hou, W.; Jiang, Z.; Li, H.; Singer, A.J.; Hoshmand-Kochi, M.; Abbasi, A.; Glass, S.; Thode, H.C.; Levsky, J.; et al. Longitudinal Chest X-ray Scores and their Relations with Clinical Variables and Outcomes in COVID-19 Patients. Diagnostics 2023, 13, 1107. https://doi.org/10.3390/diagnostics13061107
Shen B, Hou W, Jiang Z, Li H, Singer AJ, Hoshmand-Kochi M, Abbasi A, Glass S, Thode HC, Levsky J, et al. Longitudinal Chest X-ray Scores and their Relations with Clinical Variables and Outcomes in COVID-19 Patients. Diagnostics. 2023; 13(6):1107. https://doi.org/10.3390/diagnostics13061107
Chicago/Turabian StyleShen, Beiyi, Wei Hou, Zhao Jiang, Haifang Li, Adam J. Singer, Mahsa Hoshmand-Kochi, Almas Abbasi, Samantha Glass, Henry C. Thode, Jeffrey Levsky, and et al. 2023. "Longitudinal Chest X-ray Scores and their Relations with Clinical Variables and Outcomes in COVID-19 Patients" Diagnostics 13, no. 6: 1107. https://doi.org/10.3390/diagnostics13061107
APA StyleShen, B., Hou, W., Jiang, Z., Li, H., Singer, A. J., Hoshmand-Kochi, M., Abbasi, A., Glass, S., Thode, H. C., Levsky, J., Lipton, M., & Duong, T. Q. (2023). Longitudinal Chest X-ray Scores and their Relations with Clinical Variables and Outcomes in COVID-19 Patients. Diagnostics, 13(6), 1107. https://doi.org/10.3390/diagnostics13061107