WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis
<p>Data collection of chest X-ray images of different pneumonia-related illnesses including COVID-19.</p> "> Figure 2
<p>Data collection of computed tomography (CT) images of COVID-19 and non-COVID-19.</p> "> Figure 3
<p>Overall structure of our proposed WMR-DepthwiseNet.</p> "> Figure 4
<p>Detailed structure of our proposed depthwise separable convolution module.</p> "> Figure 5
<p>Transition of regular convolution to depthwise separable convolution module for both <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>×</mo> <mn>5</mn> </mrow> </semantics></math> depthwise convolutions.</p> "> Figure 6
<p>Illustration of discrete wavelet transform operation for downsampling.</p> "> Figure 7
<p>(<b>a</b>)–(<b>d</b>) Detailed structure of the wavelet multiresolution analysis of four-level decomposition.</p> "> Figure 8
<p>Accuracy curves showing the performance of our proposed WMR-DepthwiseNet in comparison with some selected up-to-date COVID-19 models using the same CXR dataset.</p> "> Figure 9
<p>Accuracy curves showing the performance of the formulated WMR-DepthwiseNet in comparison with some selected up-to-date COVID-19 models using the same CT dataset.</p> "> Figure 10
<p>ROC-AUC curves of our proposed WMR-DepthwiseNet in comparison with some selected up-to-date models using the same CXR dataset.</p> "> Figure 11
<p>ROC-AUC curves of our proposed WMR-DepthwiseNet in comparison with some selected up-to-date models using the same CT dataset.</p> "> Figure 12
<p>Precision-Recall curves of the formulated WMR-DepthwiseNet in comparison with some selected up-to-date models using the same CXR dataset.</p> "> Figure 13
<p>Precision-Recall curves of the formulated WMR-DepthwiseNet in comparison with some selected up-to-date models using the same CT dataset.</p> ">
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Datasets
3.2. Proposed WMR-DepthwiseNet
3.2.1. Depthwise Separable Convolution Module
3.2.2. Discrete Wavelet Transform
3.2.3. Wavelet Multiresolution Analysis
4. Results
4.1. Experimental Details
4.2. Experimental Setup
5. Evaluation
5.1. Ablation Study
- WMR-DepthwiseNet-A: (bn 3 × 3) + (bn 5 × 5): This network employs bottleneck modules of depthwise separable convolution, bottleneck modules of depthwise separable convolution.
- WMR-DepthwiseNet-B: (bn 3 × 3) + (bn 5 × 5): This network employs bottleneck modules of depthwise separable convolution, bottleneck modules of depthwise separable convolution.
- WMR-DepthwiseNet-C: (bn 3 × 3) + (bn 5 × 5):This network employs bottleneck modules of depthwise separable convolution, bottleneck modules of depthwise separable convolution.
- WMR-DepthwiseNet-D: (bn 3 × 3) + (bn 5 × 5):This network employs bottleneck modules of depthwise separable convolution, bottleneck modules of depthwise separable convolution.
5.2. COVID-19 Classification Evaluation
5.3. Cross-Dataset Evaluation
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. Available online: https://covid19.who.int/ (accessed on 5 January 2022).
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 2020, 296, E32–E40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Gao, G.; Xu, Y.; Pu, L.; Wang, Q.; Wang, L.; Wang, W.; Song, Y.; Chen, M.; Wang, L.; et al. SARS-CoV-2–positive sputum and feces after conversion of pharyngeal samples in patients with COVID-19. Ann. Intern. Med. 2020, 172, 832–834. [Google Scholar] [CrossRef] [PubMed]
- Hosseiny, M.; Kooraki, S.; Gholamrezanezhad, A.; Reddy, S.; Myers, L. Radiology perspective of coronavirus disease 2019 (COVID-19): Lessons from severe acute respiratory syndrome and Middle East respiratory syndrome. Am. J. Roentgenol. 2020, 214, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Ravishankar, H. Understanding the mechanisms of deep transfer learning for medical images. In Deep Learning and Data Labeling for Medical Applications; Springer: Berlin, Germany, 2016; pp. 188–196. [Google Scholar]
- Yu, Y.; Lin, H.; Meng, J.; Wei, X.; Guo, H.; Zhao, Z. Deep transfer learning for modality classification of medical images. Information 2017, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Ulhaq, A.; Khan, A.; Gomes, D.; Pau, M. Computer vision for COVID-19 control: A survey. arXiv 2020, arXiv:2004.09420. [Google Scholar] [CrossRef]
- Born, J.; Brändle, G.; Cossio, M.; Disdier, M.; Goulet, J.; Roulin, J.; Wiedemann, N. POCOVID-Net: Automatic detection of COVID-19 from a new lung ultrasound imaging dataset (POCUS). arXiv 2020, arXiv:2004.12084. [Google Scholar]
- Bell, D.J. COVID-19. Available online: https//radiopaedia.org/articles/covid-19-3 (accessed on 17 May 2021).
- Chen, J.; Wu, L.; Zhang, J.; Zhang, L.; Gong, D.; Zhao, Y.; Chen, Q.; Huang, S.; Yang, M.; Yang, X.; et al. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Sci. Rep. 2020, 10, 19196. [Google Scholar] [CrossRef]
- Wang, S.; Kang, B.; Ma, J.; Zeng, X.; Xiao, M.; Guo, J.; Cai, M.; Yang, J.; Li, Y.; Meng, X.; et al. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). Eur. Radiol. 2021, 31, 6096–6104. [Google Scholar] [CrossRef]
- Livingston, E.; Desai, A.; Berkwits, M. Sourcing personal protective equipment during the COVID-19 pandemic. JAMA 2020, 323, 1912–1914. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.Y.F.; Lam, H.Y.S.; Fong, A.H.T.; Leung, S.T.; Chin, T.W.Y.; Lo, C.S.Y.; Lui, M.M.S.; Lee, J.C.Y.; Chiu, K.W.H.; Chung, T.W.H.; et al. Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology 2020, 296, E72–E78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nneji, G.U.; Cai, J.; Deng, J.; Nahar, S.; Mgbejime, G.T.; James, E.C.; Woldeyes, S.K. A Dual Weighted Shared Capsule Network for Diabetic Retinopathy Fundus Classification. In Proceedings of the 2021 International Conference on High Performance Big Data and Intelligent Systems (HPBD & IS), Macau, China, 5–7 December 2021; pp. 297–302. [Google Scholar] [CrossRef]
- Nneji, G.U.; Cai, J.; Jianhua, D.; Monday, H.N.; Ejiyi, C.J.; James, E.C.; Mgbejime, G.T.; Oluwasanmi, A. A Super-Resolution Generative Adversarial Network with Siamese CNN Based on Low Quality for Breast Cancer Identification. In Proceedings of the 4th International Conference on Pattern Recognition and Artificial Intelligence, Yibin, China, 20–22 August 2021; pp. 218–223. [Google Scholar]
- Monday, H.N.; Li, J.P.; Nneji, G.U.; Oluwasanmi, A.; Mgbejime, G.T.; Ejiyi, C.J.; Chikwendu, I.A.; James, E.C. Improved Convolutional Neural Multi-Resolution Wavelet Network for COVID-19 Pneumonia Classification. In Proceedings of the 4th International Conference on Pattern Recognition and Artificial Intelligence, Yibin, China, 20–22 August 2021; pp. 267–273. [Google Scholar]
- Monday, H.N.; Li, J.P.; Nneji, G.U.; James, E.C.; Chikwendu, I.A.; Ejiyi, C.J.; Oluwasanmi, A.; Mgbejime, G.T. The Capability of Multi Resolution Analysis: A Case Study of COVID-19 Diagnosis. In Proceedings of the 4th International Conference on Pattern Recognition and Artificial Intelligence, Yibin, China, 20–22 August 2021; pp. 236–242. [Google Scholar]
- Monday, H.N.; Li, J.; Nneji, G.U.; Nahar, S.; Hossin, M.A.; Jackson, J.; Ejiyi, C.J. COVID-19 Diagnosis from Chest X-ray Images Using a Robust Multi-Resolution Analysis Siamese Neural Network with Super-Resolution Convolutional Neural Network. Diagnostics 2022, 12, 741. [Google Scholar] [CrossRef]
- Nneji, G.U.; Cai, J.; Monday, H.N.; Hossin, M.A.; Nahar, S.; Mgbejime, G.T.; Deng, J. Fine-Tuned Siamese Network with Modified Enhanced Super-Resolution GAN Plus Based on Low-Quality Chest X-ray Images for COVID-19 Identification. Diagnostics 2022, 12, 717. [Google Scholar] [CrossRef]
- Nneji, G.U.; Cai, J.; Deng, J.; Monday, H.N.; James, E.C.; Ukwuoma, C.C. Multi-Channel Based Image Processing Scheme for Pneumonia Identification. Diagnostics 2022, 12, 325. [Google Scholar] [CrossRef]
- Shen, B.; Hoshmand-Kochi, M.; Abbasi, A.; Glass, S.; Jiang, Z.; Singer, A.J.; Thode, H.C.; Li, H.; Hou, W.; Duong, T.Q. Initial Chest Radiograph Scores Inform COVID-19 Status, Intensive Care Unit Admission and Need for Mechanical Ventilation. Clin. Radiol. 2021, 76, 473.e1–473.e7. [Google Scholar] [CrossRef]
- Cohen, J.P.; Morrison, P.; Dao, L.; Roth, K.; Duong, T.Q.; Ghassemi, M. COVID-19 Image Data Collection: Prospective Predictions Are the Future. arXiv 2020, arXiv:006.11988. [Google Scholar]
- Wong, A.; Lin, Z.Q.; Wang, L.; Chung, A.G.; Shen, B.; Abbasi, A.; Hoshmand-Kochi, M.; Duong, T.Q. Towards Computer-Aided Severity Assessment via Deep Neural Networks for Geographic and Opacity Extent Scoring of SARS-CoV-2 Chest X-rays. Sci. Rep. 2021, 11, 9315. [Google Scholar] [CrossRef]
- Nneji, G.U.; Cai, J.; Deng, J.; Monday, H.N.; James, E.C.; Lemessa, B.D.; Yutra, A.Z.; Leta, Y.B.; Nahar, S. COVID-19 Identification Using Deep Capsule Network: A Perspective of Super-Resolution CNN on Low-Quality CXR Images. In Proceedings of the 7th International Conference on Communication and Information Processing (ICCIP 2021), Beijing, China, 16–18 December 2021; pp. 96–102. [Google Scholar]
- Monday, H.N.; Li, J.P.; Nneji, G.U.; Yutra, A.Z.; Lemessa, B.D.; Nahar, S.; James, E.C.; Haq, A.U. The Capability of Wavelet Convolutional Neural Network for Detecting Cyber Attack of Distributed Denial of Service in Smart Grid. In Proceedings of the 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 17–19 December 2021; pp. 413–418. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Y.; Pang, G.; Liao, Z.; Verjans, J.; Li, W.; Sun, Z.; He, J.; Li, Y.; Shen, C.; et al. Viral Pneumonia Screening on Chest X-rays Using Confidence-Aware Anomaly Detection. IEEE Trans. Med. Imaging 2020, 40, 879–890. [Google Scholar] [CrossRef]
- Li, X.; Ge, P.; Zhu, J.; Li, H.; Graham, J.; Singer, A.; Richman, P.S.; Duong, T.Q. Deep learning prediction of likelihood of ICU admission and mortality in COVID-19 patients using clinical variables. PeerJ 2020, 8, e10337. [Google Scholar] [CrossRef]
- Hou, W.; Zhao, Z.; Chen, A.; Li, H.; Duong, T.Q. Machining learning predicts the need for escalated care and mortality in COVID-19 patients from clinical variables. Int. J. Med. Sci. 2021, 18, 1739–1745. [Google Scholar] [CrossRef]
- Nneji, G.U.; Cai, J.; Jianhua, D.; Monday, H.N.; Chikwendu, I.A.; Oluwasanmi, A.; James, E.C.; Mgbejime, G.T. Enhancing Low Quality in Radiograph Datasets Using Wavelet Transform Convolutional Neural Network and Generative Adversarial Network for COVID-19 Identification. In Proceedings of the 2021 4th International Conference on Pattern Recognition and Artificial Intelligence, Xiamen, China, 24–26 September 2021; pp. 146–151. [Google Scholar] [CrossRef]
- Hemdan, E.E.-D.; Shouman, M.A.; Karar, M.E. Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in X-ray images. arXiv 2020, arXiv:2003.11055. [Google Scholar]
- Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al Emadi, N.; et al. Can AI help in screening Viral and COVID-19 pneumonia? arXiv 2020, arXiv:2003.13145. [Google Scholar] [CrossRef]
- Wang, L.; Lin, Z.Q.; Wong, A. Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest X-ray images. Sci. Rep. 2020, 10, 19549. [Google Scholar] [CrossRef] [PubMed]
- Polsinelli, M.; Cinque, L.; Placidi, G. A light cnn for detecting covid-19 from ct scans of the chest. Pattern Recognit. Lett. 2020, 140, 95–100. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, V.; Kaur, M. Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1379–1389. [Google Scholar] [CrossRef]
- Ouyang, X. Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia. IEEE Trans. Med. Imaging 2020, 39, 2595–2605. [Google Scholar] [CrossRef]
- Li, L. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy. Radiology 2020, 296, E65–E71. [Google Scholar] [CrossRef]
- Zheng, C.; Deng, X.; Fu, Q.; Zhou, Q.; Feng, J.; Ma, H.; Liu, W.; Wang, X. Deep learning-based detection for COVID-19 from chest CT using weak label. MedRxiv 2020. [Google Scholar]
- Maghdid, H.S.; Asaad, A.T.; Ghafoor, K.Z.; Sadiq, A.S.; Mirjalili, S.; Khan, M.K. Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms. Multimodal Image Exploit. Learn. 2021, 11734, 117340E. [Google Scholar]
- Barstugan, M.; Ozkaya, U.; Ozturk, S. Coronavirus (covid-19) classification using ct images by machine learning methods. arXiv 2020, arXiv:2003.09424. [Google Scholar]
- Shi, F.; Xia, L.; Shan, F.; Song, B.; Wu, D.; Wei, Y.; Yuan, H.; Jiang, H.; He, Y.; Gao, Y.; et al. Large-Scale Screening of COVID-19 from Community Acquired Pneumonia using Infection Size-Aware Classification. Phys. Med. Biol. 2021, 66, 065031. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zheng, S.; Li, L.; Zhang, X.; Zhang, X.; Huang, Z.; Chen, J.; Wang, R.; Zhao, H.; Chong, Y.; et al. Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 18, 2775–2780. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z. Severity assessment of coronavirus disease 2019 (COVID-19) using quantitative features from chest CT images. arXiv 2020, arXiv:2003.11988. [Google Scholar]
- Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.; Dahly, D.L.; Damen, J.A.; Debray, T.P.; et al. Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal. BMJ 2020, 369, m1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RSNA Pneumonia Detection Challenge | Kaggle. Available online: https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data (accessed on 1 May 2021).
- NIH Chest X-rays | Kaggle. Available online: https://www.kaggle.com/nih-chest-xrays/data (accessed on 9 June 2021).
- Rahman, T.; Khandakar, A.; Qiblawey, Y.; Tahir, A.; Kiranyaz, S.; Kashem, S.B.A.; Islam, M.T.; Al Maadeed, S.; Zughaier, S.M.; Khan, M.S.; et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput. Biol. Med. 2021, 132, 104319. [Google Scholar] [CrossRef] [PubMed]
- Soares, E.; Angelov, P.; Biaso, S.; Froes, M.H.; Abe, D.K. SARS-CoV-2 ct-scan dataset: A large dataset of real patients ct scans for sars-cov-2 identification. medRxiv 2020. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–20 June 2018; pp. 7132–7141. [Google Scholar]
- Park, J.; Woo, S.; Lee, J.-Y.; Kweon, I.S. BAM: Bottleneck attention module. arXiv 2018, arXiv:1807.06514. [Google Scholar]
- Chen, L.; Zhang, H.; Xiao, J.; Nie, L.; Shao, J.; Liu, W.; Chua, T.S. SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5659–5667. [Google Scholar]
- Xu, X. Deep learning system to screen coronavirus disease 2019 pneumonia. arXiv 2020, arXiv:2002.09334. [Google Scholar] [CrossRef]
- Jin, C.; Chen, W.; Cao, Y.; Xu, Z.; Tan, Z.; Zhang, X.; Deng, L.; Zheng, C.; Zhou, J.; Shi, H.; et al. Development and evaluation of an AI system for COVID-19 diagnosis. Nat. Commun. 2020, 11, 5088. [Google Scholar] [CrossRef]
- Jin, S. AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Tabrizchi, H.; Mosavi, A.; Vamossy, Z.; Varkonyi-Koczy, A.R. Densely Connected Convolutional Networks (DenseNet) for Diagnosing Coronavirus Disease (COVID-19) from Chest X-ray Imaging. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA) 2021, Lausanne, Switzerland, 23–25 June 2021; pp. 1–5. [Google Scholar]
- Tabrizchi, H.; Mosavi, A.; Szabo-Gali, A.; Felde, I.; Nadai, L. Rapid COVID-19 Diagnosis Using Deep Learning of the Computerized Tomography Scans. In Proceedings of the 2020 IEEE 3rd International Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE), Online, 18–19 November 2020. [Google Scholar]
- Wang, X.; Deng, X.; Fu, Q.; Zhou, Q.; Feng, J.; Ma, H.; Liu, W.; Zheng, C. A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT. IEEE Trans. Med. Imaging 2020, 39, 2615–2625. [Google Scholar] [CrossRef] [PubMed]
- Tabik, S.; Gómez-Ríos, A.; Martín-Rodríguez, J.L.; Sevillano-García, I.; Rey-Area, M.; Charte, D.; Guirado, E.; Suárez, J.L.; Luengo, J.; Valero-González, M.A.; et al. COVIDGR Dataset and COVID-SDNet Methodology for Predicting COVID-19 Based on Chest X-Ray Images. IEEE J. Biomed. Health Inform. 2020, 24, 3595–3605. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; He, X.; Zhao, J.; Zhang, Y.; Zhang, S.; Xie, P. COVID-CT-dataset: A CT scan dataset about COVID-19. arXiv 2020, arXiv:2003.13865. [Google Scholar]
Dataset | Category of Pneumonia | Data Count per Category | Selected No. of Data Category | Training Set | Validation Set | Test Set |
---|---|---|---|---|---|---|
RSNA [45] | Bacteria | 3029 | 2000 | 1400 | 400 | 200 |
Viral | 2983 | 2000 | 1400 | 400 | 200 | |
Healthy | 8851 | 2000 | 1400 | 400 | 200 | |
NIH [46] | Atelectasis | 4999 | 2000 | 1400 | 400 | 200 |
Cardiomegaly | 10,000 | 2000 | 1400 | 400 | 200 | |
Consolidation | 10,000 | 2000 | 1400 | 400 | 200 | |
Effusion | 10,000 | 2000 | 1400 | 400 | 200 | |
Infiltration | 10,000 | 2000 | 1400 | 400 | 200 | |
Mass | 10,000 | 2000 | 1400 | 400 | 200 | |
Nodule | 10,000 | 2000 | 1400 | 400 | 200 | |
Pneumothorax | 10,000 | 2000 | 1400 | 400 | 200 | |
Rahman et al. [47] | COVID-19 | 3616 | 2000 | 1400 | 400 | 200 |
Total | 93,627 | 24,000 | 16,800 | 4800 | 2400 |
Dataset | Category of Pneumonia | Data Count per Category | Selected No. of Data Category | Training Set | Validation Set | Test Set |
---|---|---|---|---|---|---|
Silva et al. [48] | COVID-CT | 1252 | 1230 | 861 | 246 | 123 |
NON-COVID-CT | 1230 | 1230 | 861 | 246 | 123 | |
Total | 2482 | 2460 | 1722 | 492 | 246 |
Input | Operator | Expansion Size | Output | NLT | SD |
---|---|---|---|---|---|
224 × 224 × 3 | Conv2d, 3×3 | - | 16 | HSW | 2 |
112 × 112 × 16 | bnk, 3×3 | 16 | 16 | REL | 2 |
56 × 56 × 16 | bnk, 3×3 | 72 | 24 | REL | 2 |
28 × 28 × 24 | bnk, 3×3 | 86 | 24 | RE | 1 |
28 × 28 × 24 | bnk, 5×5 | 96 | 40 | HSW | 2 |
14 × 14 × 40 | bnk, 5×5 | 240 | 40 | HSW | 1 |
14 × 14 × 40 | bnk, 5×5 | 240 | 40 | HSW | 1 |
14 × 14 × 40 | bnk, 5×5 | 120 | 48 | HSW | 1 |
14 × 14 × 48 | bnk, 5×5 | 144 | 48 | HSW | 1 |
7 × 7 × 96 | bnk, 5×5 | 288 | 96 | HSW | 2 |
7 × 7 × 96 | bnk, 5×5 | 576 | 96 | HS | 1 |
7 × 7 × 96 | bnk, 5×5 | 576 | 96 | HSW | 1 |
7 × 7 × 256 | Conv2d, 1×1 | - | 256 | HSW | 1 |
1 × 1 × 256 | Avg pool 7×7 | - | - | - | 1 |
1 × 1 × 1024 | Conv2d, 1×1 | - | 1024 | HSW | 1 |
Structural Models | SEN (%) | SPE (%) | ACC (%) | AUC (%) | PRE (%) | F1-Score (%) | Time (min) |
---|---|---|---|---|---|---|---|
WMR-DepthwiseNet-A: 3 (bn ) + 5 (bn ) | 92.71 | 91.84 | 90.39 | 91.14 | 91.67 | 92.12 | 13.5 |
WMR-DepthwiseNet-B: 3 (bn ) + 6 (bn ) | 97.5 | 96.22 | 93.57 | 96.93 | 95.42 | 96.15 | 14.2 |
WMR-DepthwiseNet-C: 3 (bn ) + 7 (bn ) | 98.17 | 97.85 | 95.26 | 97.11 | 96.64 | 97.3 | 14.9 |
WMR-DepthwiseNet-D: 3 (bn ) + 8 (bn ) | 98.46 | 97.99 | 98.63 | 98.72 | 98.69 | 98.92 | 15.6 |
WMR-DepthwiseNet-D: 3 (bn ) + 9 (bn ) | 96.3 | 94.6 | 95.6 | 94.8 | 96.2 | 95.1 | 16.7 |
WMR-DepthwiseNet-D: 3 (bn ) + 10 (bn ) | 95.2 | 94.4 | 93.7 | 94.1 | 95.8 | 96.8 | 17.1 |
Structural Models | SEN (%) | SPE (%) | ACC (%) | AUC (%) | PRE (%) | F1-Score (%) | Time (min) |
---|---|---|---|---|---|---|---|
WMR-DepthwiseNet-A: 3 (bn ) + 5 (bn ) | 91.46 | 92.61 | 89.07 | 90.48 | 90.81 | 91.78 | 11.3 |
WMR-DepthwiseNet-B: 3 (bn ) + 6 (bn ) | 94.67 | 95.12 | 91.31 | 95.73 | 94.28 | 95.58 | 12.7 |
WMR-DepthwiseNet-C: 3 (bn ) + 7 (bn ) | 95.41 | 96.92 | 94.55 | 95.82 | 95.14 | 96.86 | 12.5 |
WMR-DepthwiseNet-D: 3 (bn ) + 8 (bn ) | 97.78 | 96.22 | 96.83 | 97.61 | 97.02 | 97.37 | 13.9 |
WMR-DepthwiseNet-D: 3 (bn ) + 9 (bn ) | 94.1 | 93.7 | 95.1 | 94.9 | 95.1 | 94.7 | 14.8 |
WMR-DepthwiseNet-D: 3 (bn ) + 10 (bn ) | 94.8 | 94.1 | 94.0 | 95.8 | 94.3 | 93.9 | 15.5 |
Models | SEN (%) | SPE (%) | ACC (%) | AUC (%) | PRE (%) | F1 Score (%) | Time (min) |
---|---|---|---|---|---|---|---|
VGG-19 | 92.71 | 91.84 | 92.39 | 91.14 | 91.67 | 92.12 | 26.2 |
AlexNet | 90.37 | 89.72 | 89.95 | 90.61 | 89.75 | 90.18 | 16.4 |
ResNet-50 | 95.73 | 96.18 | 94.23 | 95.76 | 93.92 | 94.86 | 25.9 |
EfficientNet | 96.49 | 95.94 | 96.69 | 94.94 | 95.77 | 96.03 | 21.6 |
DenseNet-121 | 93.74 | 92.31 | 92.85 | 93.31 | 92.95 | 93.48 | 22.1 |
Inception-V3 | 91.88 | 90.75 | 91.31 | 90.96 | 90.21 | 91.66 | 19.7 |
MobileNet-V2 | 94.83 | 95.27 | 94.14 | 93.57 | 92.63 | 93.78 | 17.3 |
WMR-DepthwiseNet-D (Proposed) | 98.46 | 97.99 | 98.63 | 98.72 | 98.69 | 98.92 | 15.6 |
Models | SEN (%) | SPE (%) | ACC (%) | AUC (%) | PRE (%) | F1 Score (%) | Time (min) |
---|---|---|---|---|---|---|---|
VGG-19 | 91.17 | 90.91 | 90.02 | 90.78 | 90.62 | 91.37 | 24.2 |
AlexNet | 89.59 | 88.71 | 88.52 | 89.98 | 90.03 | 89.74 | 14.7 |
ResNet-50 | 94.82 | 95.62 | 93.23 | 93.45 | 91.87 | 92.17 | 23.4 |
EfficientNet | 94.67 | 94.81 | 94.13 | 92.81 | 93.08 | 93.89 | 19.8 |
DenseNet-121 | 92.28 | 90.81 | 90.55 | 91.75 | 90.73 | 91.65 | 20.3 |
Inception-V3 | 90.03 | 89.24 | 90.88 | 89.32 | 89.13 | 90.78 | 17.6 |
MobileNet-V2 | 92.79 | 93.78 | 92.81 | 91.82 | 90.67 | 91.96 | 15.1 |
WMR-DepthwiseNet-D (Proposed) | 97.78 | 96.22 | 96.83 | 97.61 | 97.02 | 97.37 | 13.9 |
Methods | SEN (%) | SPE (%) | ACC (%) |
---|---|---|---|
Chen et al. [11] | 100 | 93.6 | 95.2 |
Barstugan et al. [40] | 91.8 | 92.3 | 90.7 |
Wang et al. [12] | 90.4 | 89.5 | 92.3 |
Li et al. [37] | 90.0 | 96.0 | 92.3 |
Song et al. [42] | 96.0 | 77.0 | 86.1 |
Shi et al. [41] | 90.7 | 87.2 | 89.4 |
Wang et al. [33] | 85.9 | 89.4 | 82.9 |
Jin et al. [53] | 94.1 | 95.5 | 96.5 |
Xu et al. [52] | 87.9 | 90.7 | 86.7 |
Jin et al. [54] | 97.4 | 92.2 | 95.7 |
WMR-DepthwiseNet-D (CXR) | 98.46 | 97.99 | 98.63 |
WMR-DepthwiseNet-D (CT) | 97.78 | 96.22 | 96.83 |
Model | SEN (%) | SPE (%) | ACC (%) | AUC (%) | PREC (%) | Time (min) |
---|---|---|---|---|---|---|
COVID-Net [33] | 94.20 | 93.99 | 94.86 | 94.32 | 95.56 | 26.4 |
DeCoVNet [57] | 97.21 | 97.68 | 97.78 | 97.21 | 97.41 | 22.8 |
Cov-Net [37] | 97.92 | 96.28 | 97.67 | 96.27 | 97.65 | 23.7 |
DeepPneumonia [42] | 90.72 | 91.20 | 90.78 | 90.06 | 91.80 | 25.8 |
WMR-DepthwiseNet-D (CXR) | 98.46 | 97.99 | 98.63 | 98.72 | 98.69 | 15.6 |
Model | SEN (%) | SPE (%) | ACC (%) | AUC (%) | PREC (%) | Time (min) |
---|---|---|---|---|---|---|
COVID-Net [33] | 92.37 | 92.54 | 93.81 | 92.65 | 93.16 | 24.9 |
DeCoVNet [57] | 95.81 | 96.43 | 95.17 | 94.98 | 95.21 | 20.2 |
Cov-Net [37] | 95.76 | 95.81 | 96.76 | 95.36 | 95.03 | 21.6 |
DeepPneumonia [42] | 89.04 | 90.77 | 89.24 | 89.70 | 90.55 | 23.4 |
WMR-DepthwiseNet-D (CT) | 97.78 | 96.22 | 96.83 | 97.61 | 97.02 | 13.9 |
CXR Dataset | CT Dataset | |||||
---|---|---|---|---|---|---|
Hyper-Parameter Tuning | SGD | Adam | RMSProp | SGD | Adam | RMSProp |
ACC (%) | ACC (%) | ACC (%) | ACC (%) | ACC (%) | ACC (%) | |
LR (0.1) + Dropout (0.25) | 88.18 | 90.73 | 91.14 | 89.91 | 90.77 | 91.89 |
LR (0.1) + Dropout (0.50) | 90.56 | 91.26 | 89.72 | 90.26 | 91.37 | 89.43 |
LR (0.1) + Dropout (0.75) | 89.88 | 90.14 | 89.02 | 91.72 | 92.74 | 90.19 |
LR (0.01) + Dropout (0.25) | 92.51 | 91.85 | 90.18 | 91.78 | 90.42 | 89.33 |
LR (0.01) + Dropout (0.50) | 91.04 | 90.28 | 91.22 | 90.80 | 92.25 | 91.66 |
LR (0.01) + Dropout (0.75) | 90.55 | 92.83 | 92.76 | 91.08 | 91.81 | 90.71 |
LR (0.001) + Dropout (0.25) | 90.33 | 91.18 | 93.18 | 92.46 | 91.52 | 90.59 |
LR (0.001) + Dropout (0.50) | 91.77 | 92.15 | 91.13 | 92.89 | 92.79 | 92.77 |
LR (0.001) + Dropout (0.75) | 92.66 | 93.78 | 92.99 | 94.02 | 93.68 | 92.16 |
LR (0.0001) + Dropout (0.25) | 94.38 | 94.13 | 93.23 | 94.38 | 94.17 | 94.89 |
LR (0.0001) + Dropout (0.50) | 95.61 | 97.26 | 95.81 | 94.27 | 96.83 | 95.33 |
LR (0.0001) + Dropout (0.75) | 94.79 | 95.76 | 93.98 | 93.16 | 94.72 | 94.79 |
Dataset | Category of Pneumonia | Data Count per Category | Selected No. of Data Category | Training Set | Validation Set | Test Set |
---|---|---|---|---|---|---|
Tabik et al. [58] | COVID-CXR | 426 | 424 | 212 | 106 | 106 |
NON-COVID-CXR | 426 | 424 | 212 | 106 | 106 | |
Rahman et al. [47] | COVID-CXR | 3616 | 424 | 212 | 106 | 106 |
NON-COVID-CXR | 10,192 | 424 | 212 | 106 | 106 | |
Total | 14,656 | 1696 | 848 | 424 | 424 |
Dataset | Category of Pneumonia | Data Count per Category | Selected No. of Data Category | Training Set | Validation Set | Test Set |
---|---|---|---|---|---|---|
Soares et al. [48] | COVID-CT | 1252 | 424 | 212 | 106 | 106 |
NON-COVID-CT | 1230 | 424 | 212 | 106 | 106 | |
Yang et al. [59] | COVID-CT | 349 | 424 | 212 | 106 | 106 |
NON-COVID-CT | 463 | 424 | 212 | 106 | 106 | |
Total | 3294 | 1696 | 848 | 424 | 424 |
Training Dataset | Test Dataset | ACC (%) | SEN (%) | SPE (%) |
---|---|---|---|---|
Rahman et al. [47] | Tabik et al. [58] (Train) | 98.17 | 97.98 | 97.0 |
Rahman et al. [47] | Tabik et al. [58] (Test) | 97.92 | 97.13 | 96.87 |
Rahman et al. [47] | Tabik et al. [58] (Train + Test) | 98.01 | 97.88 | 97.09 |
Tabik et al. [58] (Train + Test) | Rahman et al. [47] | 97.87 | 97.23 | 96.46 |
Train Dataset | Test Dataset | ACC (%) | SEN (%) | SPE (%) |
---|---|---|---|---|
Soares et al. [48] | Yang et al. [59] (Train/Val) | 96.0 | 97.11 | 95.92 |
Soares et al. [48] | Yang et al. [59] (Test) | 95.46 | 96.73 | 94.81 |
Soares et al. [48] | Yang et al. [59] (Train/Val + Test) | 97.0 | 95.03 | 95.55 |
Yang et al. [59] (Train/Val + Test) | Soares et al. [48] | 96.94 | 90.55 | 95.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monday, H.N.; Li, J.; Nneji, G.U.; Hossin, M.A.; Nahar, S.; Jackson, J.; Chikwendu, I.A. WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis. Diagnostics 2022, 12, 765. https://doi.org/10.3390/diagnostics12030765
Monday HN, Li J, Nneji GU, Hossin MA, Nahar S, Jackson J, Chikwendu IA. WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis. Diagnostics. 2022; 12(3):765. https://doi.org/10.3390/diagnostics12030765
Chicago/Turabian StyleMonday, Happy Nkanta, Jianping Li, Grace Ugochi Nneji, Md Altab Hossin, Saifun Nahar, Jehoiada Jackson, and Ijeoma Amuche Chikwendu. 2022. "WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis" Diagnostics 12, no. 3: 765. https://doi.org/10.3390/diagnostics12030765
APA StyleMonday, H. N., Li, J., Nneji, G. U., Hossin, M. A., Nahar, S., Jackson, J., & Chikwendu, I. A. (2022). WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis. Diagnostics, 12(3), 765. https://doi.org/10.3390/diagnostics12030765