A Compact Bat Algorithm for Unequal Clustering in Wireless Sensor Networks
<p>Convergence comparison of two algorithms of cBA and oBA for four first test functions. (<b>a</b>): Rosenbrock function; (<b>b</b>): Quadric function; (<b>c</b>): Ackley function; (<b>d</b>): Rastrigin function.</p> "> Figure 2
<p>Comparison of two curves with affected variety of the population size in BA and compact BA for four first test functions. (<b>a</b>): Rosenbrock function; (<b>b</b>): Quadric function; (<b>c</b>): Ackley function; (<b>d</b>): Rastrigin function.</p> "> Figure 3
<p>Comparison of running times of cBA with cBA for ten test functions.</p> "> Figure 4
<p>Comparison of four compact algorithms of rcGA, cDE, cPSO, and cBA for the selected testing functions: (<b>a</b>) is f1, (<b>b</b>) is f2, (<b>c</b>) is f5 and (<b>d</b>) is f7.</p> "> Figure 5
<p>Two scenarios of clustering and unequal clustering methods in WSNs.</p> "> Figure 6
<p>Comparison of converging curves of the cBA-WSN (with adjusted cluster size for BAs with altered loudness) and the cBA-WSN (with no adjusted).</p> "> Figure 7
<p>Comparison of advanced cBA-WSN for the number of nodes alive for a WSNs with PSO-TVAC, PSO-TVIW, LEACH, and LEACH-C approaches.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Unequal Clustering in Wireless Sensor Network (WSN)
2.2. Energy Consumption in WSNs Model
3. Compact Bat Algorithm
3.1. Bat-Inspired Algorithm
3.2. Compact Bat Algorithm
4. Experiments with Numerical Problems
5. Experiments for Clustering in WSNs Problem
5.1. Objective Function
5.2. Model Solution Representation
5.3. Equal Clustering Formation
5.4. Unequal Clustering Formation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. In Studies in Computational Intelligence; González, J., Pelta, D., Cruz, C., Terrazas, G., Krasnogor, N., Eds.; Springer: Heidelberg, Germany, 2010; Volume 284, pp. 65–74. [Google Scholar]
- Dao, T.K.; Pan, J.S.; Nguyen, T.T.; Chu, S.C.; Shieh, C.S. Compact Bat Algorithm. In Advances in Intelligent Systems and Computing; Pan, J.-S., Snasel, V., Corchado, E.S., Abraham, A., Wang, S.-L., Eds.; Springer International Publishing: Heidelberg, Germany, 2014; Volume 298, pp. 57–68. [Google Scholar]
- Yang, X. Bat Algorithm: Literature Review and Applications. Int. J. Bio-Inspired Comput. 2013, 5, 1–10. [Google Scholar] [CrossRef]
- Dao, T.; Pan, T.; Nguyen, T.; Chu, S. Evolved Bat Algorithm for Solving the Economic Load Dispatch Problem. Adv. Intell. Syst. Comput. 2015, 329, 109–119. [Google Scholar]
- Tsai, P.W.; Pan, J.S.; Liao, B.Y.; Tsai, M.J.; Istanda, V. Bat algorithm inspired algorithm for solving numerical optimization problems. Appl. Mech. Mater. 2012, 148, 134–137. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Pan, J.-S.; Dao, T.-K.; Kuo, M.-Y.; Horng, M.-F. Hybrid Bat Algorithm with Artificial Bee Colony; Springer: Heidelberg, Germany, 2014; Volume 298. [Google Scholar]
- Nakamura, R.Y.M.; Pereira, L.A.M.; Rodrigues, D.; Costa, K.A.P.; Papa, J.P.; Yang, X.-S. Binary bat Algorithm for Feature Selection. In Swarm Intelligence and Bio-Inspired Computation; Elsevier: Amsterdam, The Netherlands, 2013; pp. 225–237. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Yang, X.-S. Binary bat algorithm. Neural Comput. Appl. 2014, 25, 663–681. [Google Scholar] [CrossRef]
- Kang, M.; Kim, J.; Kim, J.-M. Reliable fault diagnosis for incipient low-speed bearings using fault feature analysis based on a binary bat algorithm. Inf. Sci. 2015, 294, 423–438. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; He, Y. Chaotic binary bat algorithm for analog test point selection. Analog Integr. Circuits Signal Process. 2015, 84, 201–214. [Google Scholar]
- Rizk-Allah, R.M.; Hassanien, A.E. New binary bat algorithm for solving 0–1 knapsack problem. Complex Intell. Syst. 2018, 4, 31–53. [Google Scholar] [CrossRef]
- Dao, T.-K.; Pan, T.-S.; Nguyen, T.-T.; Pan, J.-S. Parallel bat algorithm for optimizing makespan in job shop scheduling problems. J. Intell. Manuf. 2018, 29, 451–462. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, Y.; Xie, J.; Ma, M.; Li, L. Discrete bat algorithm for optimal problem of permutation flow shop scheduling. Sci. World J. 2014, 2014, 15. [Google Scholar] [CrossRef] [PubMed]
- Osaba, E.; Yang, X.-S.; Diaz, F.; Lopez-Garcia, P.; Carballedo, R. An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems. Eng. Appl. Artif. Intell. 2016, 48, 59–71. [Google Scholar] [CrossRef]
- Estrin, D.; Heidemann, J.; Kumar, S.; Rey, M. Next Century Challenges: Scalable Coordination in Sensor Networks. In Proceedings of the 5th annual ACM/IEEE International Conference on Mobile Computing and Networking, Seattle, WA, USA, 18–19 August 1999; Volume 4, pp. 263–270. [Google Scholar]
- Nguyen, T.-T.; Dao, T.-K.; Horng, M.-F.; Shieh, C.-S. An Energy-based Cluster Head Selection Algorithm to Support Long-lifetime in Wireless Sensor Networks. J. Netw. Intell. 2016, 1, 23–37. [Google Scholar]
- Liu, W.; Vijayanagar, K.R.; Kim, J. Low-complexity distributed multiple description coding for wireless video sensor networks. IET Wirel. Sens. Syst. 2013, 3, 205–215. [Google Scholar] [CrossRef]
- Almalkawi, I.T.; Zapata, M.G.; Al-Karaki, J.N.; Morillo-Pozo, J. Wireless multimedia sensor networks: Current trends and future directions. Sensors 2010, 10, 6662–6717. [Google Scholar] [CrossRef] [PubMed]
- Djedjiga, A.A.; Abdeldjalil, O. Monitoring crack growth using thermography. C. R. Mec. 2008, 336, 677–683. [Google Scholar]
- Broday, D.M. Wireless distributed environmental sensor networks for air pollution measurement—The promise and the current reality. Sensors 2017, 17, 2263. [Google Scholar] [CrossRef] [PubMed]
- Meriem, D.; Abdeldjalil, O.; Hadj, B.; Adrian, B.; Denis, K. Discrete Wavelet for Multifractal Texture Classification: Application to Medical Ultrasound Imaging. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 637–640. [Google Scholar]
- Medina-García, J.; Sánchez-Rodríguez, T.; Galán, J.; Delgado, A.; Gómez-Bravo, F.; Jiménez, R. A wireless sensor system for real-time monitoring and fault detection of motor arrays. Sensors 2017, 17, 469. [Google Scholar] [CrossRef]
- Fernandez-Lozano, J.J.; Martín-Guzmán, M.; Martín-Ávila, J.; García-Cerezo, A. A wireless sensor network for urban traffic characterization and trend monitoring. Sensors 2015, 15, 26143–26169. [Google Scholar] [CrossRef]
- Garcia-Sanchez, A.-J.; Garcia-Sanchez, F.; Garcia-Haro, J. Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Comput. Electron. Agric. 2011, 75, 288–303. [Google Scholar] [CrossRef]
- Akyildiz, I.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw. 2002, 38, 393–422. [Google Scholar] [CrossRef]
- García-hernández, C.F.; Ibargüengoytia-gonzález, P.H.; García-hernández, J.; Pérez-díaz, J.a. Wireless Sensor Networks and Applications: A Survey. J. Comput. Sci. 2007, 7, 264–273. [Google Scholar]
- Pan, J.-S.; Kong, L.; Sung, T.-W.; Tsai, P.-W.; Snášel, V. A Clustering Scheme for Wireless Sensor Networks Based on Genetic Algorithm and Dominating Set. J. Int. Technol. 2018, 19, 1111–1118. [Google Scholar]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, A.A.; Younis, M. A survey on clustering algorithms for wireless sensor networks. Comput. Commun. 2007, 30, 2826–2841. [Google Scholar] [CrossRef]
- Xia, H.; Zhang, R.H.; Yu, J.; Pan, Z.K. Energy-Efficient Routing Algorithm Based on Unequal Clustering and Connected Graph in Wireless Sensor Networks. Int. J. Wirel. Inf. Netw. 2016, 23, 141–150. [Google Scholar] [CrossRef]
- Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [Google Scholar] [CrossRef] [Green Version]
- Heinzelman, W.B. Application-Specific Protocol Architectures for Wireless Networks; Massachusetts Institute of Technology: Cambridge, MA, USA, 2000. [Google Scholar]
- Nguyen, T.-T.; Shieh, C.-S.; Dao, T.-K.; Wu, J.-S.; Hu, W.-C. Prolonging of the Network Lifetime of WSN Using Fuzzy Clustering Topology. In Proceedings of the 2013 2nd International Conference on Robot, Vision and Signal Processing, RVSP, Kitakyushu, Japan, 10–12 December 2013. [Google Scholar]
- Billingsley, P. Probability and Measure, 3th ed.; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Larranaga, P.; Lozano, J.A. Estimation of Distribution Algorithms—A New Tool for Evolutionary Computation; Springer Science & Business Media: Heidelberg, Germany, 2002; Volume 2. [Google Scholar]
- Bronshtein, I.N.; Semendyayev, K.A.; Musiol, G.; Mühlig, H. Handbook of Mathematics, 6th ed.; Van Nostrand Reinhold: New York, NY, USA, 2015. [Google Scholar]
- Ghosh, S.K. Handbook of Mathematics; No. 3; Van Nostrand Reinhold: New York, NY, USA, 1989; Volume 18. [Google Scholar]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar] [Green Version]
- Neri, F.; Mininno, E.; Iacca, G. Compact particle swarm optimization. Inf. Sci. 2013, 239, 96–121. [Google Scholar] [CrossRef]
- Mininno, E.; Neri, F.; Cupertino, F.; Naso, D. Compact differential evolution. IEEE Trans. Evol. Comput. 2011, 15, 32–54. [Google Scholar] [CrossRef]
- Harik, G.R.; Lobo, F.G.; Goldberg, D.E. The compact genetic algorithm. IEEE Trans. Evol. Comput. 1999, 3, 287–297. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. A survey on sensor networks. IEEE Commun. Mag. 2002, 40, 102–105. [Google Scholar] [CrossRef]
- Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.-T.; Shieh, C.-S.; Horng, M.-F.; Ngo, T.-G.; Dao, T.-K. Unequal Clustering Formation Based on Bat Algorithm forWireless Sensor Networks. In Knowledge and Systems Engineering: Proceedings of the Sixth International Conference KSE 2014; Nguyen, V.-H., Le, A.-C., Huynh, V.-N., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 667–678. [Google Scholar]
- Pan, J.-S.; Kong, L.; Sung, T.-W.; Tsai, P.-W.; Snášel, V. α-Fraction First Strategy for Hierarchical Model in Wireless Sensor Networks. J. Internet Technol. 2018, 19, 1717–1726. [Google Scholar]
Name | Test Functions | Range | Dimension | Iteration |
---|---|---|---|---|
Rosenbrock | ±100 | 30 | 5000 | |
Quadric | ±100 | 30 | 5000 | |
Ackley | ±32 | 30 | 5000 | |
Rastrigin | ±5.12 | 30 | 5000 | |
Griewangk | ±100 | 30 | 5000 | |
Spherical | ±100 | 30 | 5000 | |
Quartic Noisy | ±1.28 | 30 | 5000 | |
Schwefel | ±100 | 30 | 5000 | |
Langermann | ±5.12 | 30 | 5000 | |
Shubert | ±32 | 30 | 5000 |
Test Functions | Evaluation Results | Accuracy % | Time Consumption (minutes) | Speed % | ||
---|---|---|---|---|---|---|
RD | Comparison | |||||
8.87 | 3% | 1.5659 | 1.3141 | 19% | ||
3.79 | 3.63 | 4% | 2.1764 | 1.7936 | 21% | |
1.92 | 1.91 | 1% | 1.498 | 1.1598 | 29% | |
2.09 | 2.05 | 2% | 1.1847 | 1.0021 | 18% | |
6.23 | 6.12 | 2% | 1.3823 | 1.0845 | 27% | |
7.64 | 7.40 | 3% | 1.1616 | 0.8768 | 32% | |
1.12 | 1.10 | 2% | 1.2823 | 1.0845 | 18% | |
6.25 | 6.00 | 4% | 1.1147 | 0.8921 | 25% | |
8.75 | 8.77 | 1% | 1.5659 | 1.3141 | 19% | |
1.50 | 1.70 | 2% | 2.4764 | 2.3936 | 17% | |
Average | 1.15 | 1.11 | 3% | 1.4207 | 1.1509 | 24% |
Algorithms | Number of Solutions | Occupied Slots | Used Equations |
---|---|---|---|
oBA | N | 4 × N | (8), (9), (10), (11) |
cBA | 1 | 8 | (8), (9), (10), (11), (15), (16), (17), (18) |
Functions | cBA | cPSO | r | cDE | r | rcGA | r |
---|---|---|---|---|---|---|---|
8.97 | 9.20 | + | 9.20 | + | 9.00 | ~ | |
3.73 | 3.69 | − | 3.73 | ~ | 3.79 | + | |
1.92 | 1.91 | − | 1.92 | + | 1.95 | + | |
2.05 | 2.06 | ~ | 2.06 | ~ | 2.09 | + | |
6.11 | 6.12 | + | 6.23 | + | 6.23 | + | |
7.64 | 7.57 | − | 7.54 | − | 7.64 | − | |
1.12 | 1.19 | + | 1.13 | + | 1.10 | + | |
6.25 | 6.50 | + | 6.29 | + | 6.27 | + | |
8.75 | 1.21 | + | 7.64 | − | 8.75 | ~ | |
1.50 | 6.57 | − | 1.81 | + | 3.18 | + | |
AVG | 9.07 | 9.21 | + | 9.20 | + | 9.10 | + |
Summary | r is ‘+’, means cBA is winner | 6+ 1~ 4− | 7+ 2~ 2− | 8+ 2~ 1− |
Index | Nodei | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | .. | n |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x | 05 | 55 | 85 | 101 | 72 | 60 | 45 | 40 | 50 | 75 | 45 | 20 | .. | 10 |
y | 01 | 5 | 10 | 30 | 15 | 20 | 45 | 60 | 85 | 90 | 95 | 80 | .. | 80 |
Index | Nodei | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | .. | n |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster head | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | .. | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.-T.; Pan, J.-S.; Dao, T.-K. A Compact Bat Algorithm for Unequal Clustering in Wireless Sensor Networks. Appl. Sci. 2019, 9, 1973. https://doi.org/10.3390/app9101973
Nguyen T-T, Pan J-S, Dao T-K. A Compact Bat Algorithm for Unequal Clustering in Wireless Sensor Networks. Applied Sciences. 2019; 9(10):1973. https://doi.org/10.3390/app9101973
Chicago/Turabian StyleNguyen, Trong-The, Jeng-Shyang Pan, and Thi-Kien Dao. 2019. "A Compact Bat Algorithm for Unequal Clustering in Wireless Sensor Networks" Applied Sciences 9, no. 10: 1973. https://doi.org/10.3390/app9101973
APA StyleNguyen, T. -T., Pan, J. -S., & Dao, T. -K. (2019). A Compact Bat Algorithm for Unequal Clustering in Wireless Sensor Networks. Applied Sciences, 9(10), 1973. https://doi.org/10.3390/app9101973