As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Secondary use of regional EHR data suffers several problems, including data selection bias and limited data size caused by data incompleteness. Here, we propose knowledge learning symbiosis (KLS) as a framework to incorporate domain knowledge to address the problems and make better secondary use of EHR data. Under the framework, we introduce three main categories of methods: knowledge injection to input features, objective functions, and output labels, where knowledge-enhanced neural network (KENN) was first introduced to inject knowledge into objective functions. A case study was conducted to build a cardiovascular disease risk prediction model on the type 2 diabetes patient cohort using regional EHR repositories. By incorporating a well-established knowledge risk model as domain knowledge under our KLS framework, we increased risk prediction performance both on small and biased data, where KENN showed the best performance among all methods.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.