As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This article presents an algorithm that uses a combination of cross-correlation analysis and lagged multiple linear regression models to predict the time-series of future demand for clinical visits associated with a certain diagnosis, specifically hypertension, in the Catalan health-care system. The algorithm aims to provide a robust and explainable feature selection set of predictors. The study demonstrates that it is possible to predict demand associated with a diagnosis through the demand for previous clinical visits, and identifies important predictors for example case hypertension-related visits. The data used is from the primary care services of the Catalan Institute of Health, and the methodology can be applied to optimize resource allocation in the healthcare system.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.