As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Reinforcement Learning (RL) methods provide a solution for decision-making problems under uncertainty. An agent finds a suitable policy through a reward function by interacting with a dynamic environment. However, for complex and large problems it is very difficult to specify and tune the reward function. Inverse Reinforcement Learning (IRL) may mitigate this problem by learning the reward function through expert demonstrations. This work exploits an IRL method named Max-Margin Algorithm (MMA) to learn the reward function for a robotic navigation problem. The learned reward function reveals the demonstrated policy (expert policy) better than all other policies. Results show that this method has better convergence and learned reward functions through the adopted method represents expert behavior more efficiently.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.