As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Patient history of sexual trauma is of clinical relevance to healthcare providers as survivors face adverse health-related outcomes. This paper describes a method for identifying mentions of sexual trauma within the free text of electronic medical notes. A natural language processing pipeline for information extraction was developed and scaled to handle a large corpus of electronic medical notes used for this study from US Veterans Health Administration medical facilities. The tool was used to identify sexual trauma mentions and create snippets around every asserted mention based on a domain-specific lexicon developed for this purpose. All snippets were evaluated by trained human reviewers. An overall positive predictive value (PPV) of 0.90 for identifying sexual trauma mentions from the free text and a PPV of 0.71 at the patient level are reported. The metrics are superior for records from female patients.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.