As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Scoring sleep stages can be considered as a classification problem. Once the whole recording segmented into 30-seconds epochs, features, extracted from raw signals, are typically injected into machine learning algorithms in order to build a model able to assign a sleep stage, trying to mimic what experts have done on the training set. Such approaches ignore the advances in sleep medicine, in which guidelines have been published by the AASM, providing definitions and rules that should be followed to score sleep stages. In addition, these approaches are not able to solve conflict situations, in which criteria of different sleep stages are met. This work proposes a novel approach based on AASM guidelines. Rules are formalized integrating, for some of them, preferences allowing to support decision in conflict situations. Applied to a doubtful epoch, our approach has taken the appropriate decision.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.