As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Text detection in urban scenes is a hard task due to the high variability of text appearance: different text fonts, changes in the point of view, or partial occlusion are just a few problems. Text detection can be specially suited for georeferencing business, navigation, tourist assistance, or to help visual impaired people. In this paper, we propose a general methodology to deal with the problem of text detection in outdoor scenes. The method is based on learning spatial information of gradient based features and Census Transform images using a cascade of classifiers. The method is applied in the context of Mobile Mapping systems, where a mobile vehicle captures urban image sequences. Moreover, a cover data set is presented and tested with the new methodology. The results show high accuracy when detecting multi-linear text regions with high variability of appearance, at same time that it preserves a low false alarm rate compared to classical approaches.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.