Abstract
Inductive inferences and inferences, by analogy with JSM reasoning, are characterized as ampliative inferences generating new knowledge. New predicates for inductive inference rules and their ordering are considered. The case of a single-element effect for the predicate “X has effect Y” is also investigated.
Similar content being viewed by others
Notes
Thus, the empirical patterns are a formalization of the idea of the knowledge-discovery process formulated in [2].
FB(0), FB(1), …, FB(s) is the sequence of expandable fact bases: FB(0) ⊂ FB(1) ⊂ … ⊂ FB(s).
Note that the degree of plausibility of a fact is 0 and that of a hypothesis is greater than 0, since it represents the number of steps of a plausible inference.
Since the truth values of JL formulas have the form \(\bar {v} = \left\langle {v,n} \right\rangle \), where \(v \in \left\{ {1, - 1,0,\tau } \right\}\), and \(n \in N\), the logic is infinite-valued.
In the case |Y| =1, \({{J}_{{\left\langle {1,1} \right\rangle }}}\left( {{{V}_{i}} \Rightarrow _{2}^{{(P)}}{{Y}_{i}}} \right)\) and \({{J}_{{\left\langle {1,0} \right\rangle }}}\left( {X \Rightarrow _{1}^{{(P)}}Y} \right)\) are used.
That is, similarities for (+)-examples and (–)-examples.
For convenience of notation, we will represent finite sets {A, B, ..., P} as words AB...P; for example, we will represent {A, B, C} as АВС.
Therefore, the relation \( \Rightarrow _{2}^{*}\) is not functional.
The premises of p.i.r.-1 are the corresponding elements of the diagram for \({{\Re }_{1}}\), and the premises of p.i.r.-2 are the corresponding elements of the diagram for \({{\bar {\Re }}_{1}}\).
If CCA(σ) are true, then the admissible JSM reasoning is strong [5].
This condition can be generalized to all Strx, y from [7]. The same holds true for the sufficient condition (**).
Obviously, for strong admissible JSM reasoning ρσ(s) = 1, where σ = +,–.
In Section 4 of this paper, possible strengthenings will be considered.
Since \(X{{ \Rightarrow }_{1}}Y\) and \(V{{ \Rightarrow }_{2}}Y\) are defined with respect to relational systems and their corresponding D0,1(P), these primitive predicates depend on the parameter Р.
In [8], J.S. Mill used the term agreement–difference. In the ARS JSM, the term similarity–difference is preferred.
The elements of M have a superscript σ, where σ = +, –, which, for the sake of notation, will sometimes be omitted.
Definitions of operations and are contained in the Appendix.
φ is obtained in the Appendix.
Indices (P) and (x, y) will sometimes be omitted for convenience of notation.
In the Appendix, the relational system \({{\bar {\Re }}_{f}}\) is considered such that the predicates \(M_{{{{a}_{{12}}}fg,0}}^{\sigma }\left( {V,Y} \right)\) are satisfiable in it.
Part II of this article will deal with the cases when |Y| > 1 and there is ¬α.
This means strengthened realization of the scientific research demarcation criterion [27].
This definition is formulated for computer systems that implement the ARS JSM method.
We intend to consider the Boolean function F2() for the case |Y | > 1 in the second part of this article.
The sets \(\overline {Str} \times A_{E}^{\sigma }\) are partially ordered with the largest and smallest element for σ = +, –, respectively.
Recall that \(A_{\chi }^{\sigma }\) is an element of the intension of the concept of empirical regularity and \(A_{\chi }^{\sigma }(C{\kern 1pt} ',\,\,Q)\) is an extension element of this concept.
Situational JSM reasoning is obviously in demand for the analysis of sociological data. Note also that there are cases when V = Ø or S = Ø.
We intend to consider this problem in the second part of this article.
REFERENCES
Finn, V.K., Exact epistemology and artificial intelligence, Autom. Docum. Math. Linguist., 2020, vol. 54, pp. 140–173. https://doi.org/10.3103/S0005105520030073
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., Advances in Knowledge Discovery and Data Mining, Cambridge: The AAAI Press, 1996.
Finn, V.K., On the intellectual data analysis, Novosti Iskusstv. Intell., 2004, no. 3, pp. 3–17.
Finn, V.K. and Shesternikova, O.P., The heuristics of detection of empirical regularities by JSM reasoning, Autom. Docum. Math. Linguist., 2018, vol. 52, pp. 215–247. https://doi.org/10.3103/S0005105518050023
Finn, V.K., On the heuristics of JSM research (additions to articles), Autom. Docum. Math. Linguist., 2019, vol. 53, pp. 250–282. https://doi.org/10.3103/S0005105519050078
Rosser, J.B. and Turquette, A.R., Many-Valued Logics, Amsterdam: North-Holland, 1958.
Finn, V.K., Distributive lattices of inductive JSM procedures, Autom. Docum. Math. Linguist., 2014, vol. 48, pp. 265–295. https://doi.org/10.3103/S0005105514060028
Mill, J.S., A System of Logic Ratiocinative and Inductive, Being a Connected View of Principles of Evidence and the Methods of Scientific Investigation, London: Parker, Son and Bowin, 1843.
Fann, K.T., Peirce’s Theory of Abduction, The Hague: Martinus Nijhoff Publishers, 1970.
Skvortsov, D.P., On some ways of constructing logical languages with quantors by tuples, Semiotika Inf., 1983, no. 20, pp. 102–126.
Handbook of Mathematical Logic, Barvais, D., Ed., Amsterdam: North-Holland, 1977.
Anshakov, O.M., Finn, V.K., and Skvortsov, D.P., On axiomatization of many-valued logics associated with formalization of plausible reasoning, Stud. Logica, 1989, vol. 48, pp. 423–447. https://doi.org/10.1007/BF00370198
Finn, V.K., A form of argumentation logic, Autom. Docum. Math. Linguist., 1996, vol. 3, no. 3, pp. 3–27.
Finn, V.K., On the class of JSM reasoning that uses the isomorphism of inductive inference rules, Sci. Tech. Inf. Process., 2017, vol. 44, pp. 387–396. https://doi.org/10.3103/S0147688217060041
Reichenbach, H., Elements of Symbolic Logic, New York: Macmillan, 1947.
Mal’tsev, A.I., Algebraicheskie sistemy (Algebraic Systems), Moscow: Nauka, 1970.
Weingartner, P., Basic Question of Truth, Dordrecht: Kluver Academic Publishers, 2000.
Rescher, N., The Coherence Theory of Truth, Oxford: The Clarendon Press, 1973.
Finn, V.K., Iskusstvennyi intellekt (metodologiya, primeneniya, filosofiya) (Artificial Intelligence: Methodology, Applications, and Philosophy), Moscow: LENAND, 2021, 2nd ed.
Grätzer, G., General Lattice Theory, Berlin: Academic-Verlag, 1978.
Smullyan, R.M., First-Order Logic, New York: Springer-Verlag, 1968.
DSM-metod avtomaticheskogo porozhdeniya gipotez: logicheskie i epistemologicheskie osnovaniya (JSM Method of Automatic Hypotheses Generation: Logical and Epistemological Foundations), Moscow: Librokom, 2009.
Frege, G., On sense and meaning, Logika i logicheskaya semantika (Logic and Logical Semantic), Moscow: Aspekt Press, 2000.
Finn, V.K., On the non-Aristotelian concept structure, Logicheskie Issled., 2015, vol. 21, no. 1, pp. 9–48. https://doi.org/10.21146/2074-1472-2015-21-1-9-48
Gillies, D., Artificial Intelligence and Scientific Method, New York: Oxford Univ. Press, 1996.
Reichenbach, H., Nomological Statement and Admissible Operations, Amsterdam: North-Holland, 1954.
Popper, K.R., Objective Knowledge: An Evolutionary Approach, Oxford: Clarendon Press, 1979.
McCarthy, D. and Hayes, P.J., Some philosophical problems from the standpoint of artificial intelligence, Mach. Intell., 1979, no. 4, pp. 463–502.
Bridgman, P.W., The nature of some of our physical concepts: I, Br. J. Philos. Sci., 1951, vol. 1, no. 4, pp. 257–272. https://doi.org/10.1093/bjps/I.4.257
Kant, I., Kritik der reinen Vernunft, Riga: Johann Friedrich Hartknoch, 1781.
Finn, V.K., J.S. Mill’s inductive methods in artificial intelligence systems. Part I, Sci. Tech. Inf. Process., 2011, vol. 37, no. 6, pp. 385–402. https://doi.org/10.3103/S0147688211060037
Finn, V.K., J.S. Mill’s inductive methods in artificial intelligence systems. Part II, Sci. Tech. Inf. Process., 2012, vol. 39, no. 5, pp. 241–260. https://doi.org/10.3103/S0147688212050036
Finn, V.K. and Mikheyenkova, M.A., Situation extension of the JSM automatic hypotheses generation method, Autom. Docum. Math. Linguist., 2000, vol. 34, no. 6, pp. 11–26.
Finn, V.K. and Shesternikova, O.P., A new variant of the generalized JSM-method for automatic support of scientific research, Sci. Tech. Inf. Process., 2017, vol. 44, no. 5, pp. 338–344. https://doi.org/10.3103/S0147688217050045
Anshakov, O.M., Skvortsov, D.P., and Finn, V.K., On deductive imitation of some variants of the JSM method of automatic hypotheses generation, Semiotika Inf., 1988, no. 33, pp. 164–233.
Finn, V.K., Foreword to the second edition, Iskusstvennyi intellekt (Artificial Intelligence), Moscow; LENAND, 2021, 2nd ed., pp. 14–31.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The author declares that he has no conflicts of interest.
Additional information
Translated by S. Avodkova
#In the presented part of the article, we study the case of a singleton effect for the predicate “X has effect Y”. We intend to consider the Boolean function F2(\(\alpha ,\beta ,\gamma \)) for the case |Y| > 1 in the second part of this article.
APPENDIX
APPENDIX
1. Using the method of analytic tables [21], we prove the proposition from Section 3: \({{(\exists )}^{{(\sigma )}}}\) ⊢ \((*)\), where σ = +, –, “⊢” is the deducibility ratio, \((*)\) is ∃V∃Y (\((M_{{{{a}_{{12,0}}}}}^{ + }\left( {V,Y} \right) \vee M_{{{{a}_{{12,0}}}}}^{ - }\left( {V,Y} \right))\), and \({{(\exists )}^{{( + )}}}\) is ∃V∃X∃Y \(({{J}_{{\left\langle {1,1} \right\rangle }}}(V{{ \Rightarrow }_{2}}Y)\) & \({{J}_{{\left\langle {1,0} \right\rangle }}}(X{{ \Rightarrow }_{1}}Y)\) & \((V \subset X))\).
∃V∃Y(\(M_{{{{a}_{{12}}},0}}^{ + }\left( {V,Y} \right)\) \( \cap , \cup ,\) \(M_{{{{a}_{{12}}},0}}^{ - }\left( {V,Y} \right)\)) ↔ (∃V∃Y\(M_{{{{a}_{{12}}},0}}^{ + }\left( {V,Y} \right)\) \(\left\langle {C,a} \right\rangle \in R_{1}^{ + };\) ∃V∃Y\(M_{{{{a}_{{12}}},0}}^{ - }\left( {V,Y} \right)\)).
Let us denote the closed formula ∃V∃Y\(M_{{{{a}_{{12}}},0}}^{ - }\left( {V,Y} \right)\) through \(\varphi \); then \((*)\) we represent as ∃V∃Y.
For the sake of simplicity of notation, we introduce the following notation:
Р(V,Y) instead of,
S(V, Y) instead of,
Q(V, Y) instead of,
L(V, X) instead of (V X),
a K(X, Y) instead of.
Then we obtain ∃V∃X∃Y(S(V, Y) & P(V, Y) & Q(V, Y) & K(X, Y) & L(X, Y) ⊢ ∃V∃YP(V, Y).
Let us construct an analytical table F.
∃V∃X∃Y(S(V, Y) & P(V, Y) & Q(V, Y) & K(X, Y) & L(X, Y)
¬(∃V∃YP(V, Y) \( \vee \,\,\varphi \))
¬∃V∃YP(V, Y)
¬\(\varphi \)
S(a, b) & P(a, b) & Q(a, b) & K(c, b) & L(c, b)
S(a, b)
P(a, b)
Q(a, b)
K(c, b)
L(c, b)
¬P(a, b)
\(*\)
F is a closed analytical table. a, b, c are the parameters.
In a similar way, we will show that (∃)–⊢. The above proposition can be extended to any JSM reasoning strategy Strx, y.
2. \((**)\) is \(\exists X\exists Y\left( {\Pi _{{{{a}_{{12}}}}}^{ + }\left( {X,Y} \right) \vee } \right.\left. {\Pi _{{{{a}_{{12}}}}}^{ - }\left( {X,Y} \right)} \right),\) \({{\left( \exists \right)}^{{\left( \sigma \right)}}}\) is \(\exists V\exists X\exists Y\left( {{{J}_{{\left\langle {v,1} \right\rangle }}}\left( {V{{ \Rightarrow }_{2}}Y} \right)} \right.\) & \({{J}_{{\left\langle {v,o} \right\rangle }}}\left( {X{{ \Rightarrow }_{1}}Y} \right)\) & \((V \subset X))\), where \(v = \left\{ \begin{gathered} 1,\,\,\,\,{\text{if}}\,\,\,\sigma = + \hfill \\ - 1,\,\,\,\,{\text{if}}\,\,\,\sigma = - \hfill \\ \end{gathered} \right.\) \(\exists X\exists Y\left( {\Pi _{{{{a}_{{12}}}}}^{ + }\left( {X,Y} \right)} \right.\) \( \vee \) \(\left. {\Pi _{{{{a}_{{12}}}}}^{ - }\left( {X,Y} \right)} \right)\) \( \leftrightarrow \) \(\left( {\exists X\exists Y\Pi_{{{{a}_{{12}}}}}^{ + }\left( {X,Y} \right) \vee } \right.\) \(\exists X\exists Y\left. {\Pi _{{{{a}_{{12}}}}}^{ - }\left( {X,Y} \right)} \right)\).
Let us show that the truth of \((**)\) implies the truth of \({{(\exists )}^{{(\sigma )}}}\), where σ = +, –.
Let us assume that \((**)\) is true. Without loss of generality, let us assume that \(\exists X\exists Y\Pi _{{{{a}_{{12}}}}}^{ + }(X,Y)\). Then \(\Pi _{{{{a}_{{12}}}}}^{ + }(C,a)\) is true, where С are the individual constants. Let us consider \({{J}_{{\left\langle {1,1} \right\rangle }}}(C{\kern 1pt} '{{ \Rightarrow }_{2}}a)\) & \((C{\kern 1pt} ' \subset C)\) & \(\neg \exists {{V}_{0}}\left( {{{J}_{{\left\langle { - 1,1} \right\rangle }}}({{V}_{0}}{{ \Rightarrow }_{2}}a)} \right.\) \( \vee {{J}_{{\left\langle {0,1} \right\rangle }}}({{V}_{0}}{{ \Rightarrow }_{2}}a))\) & \(({{V}_{0}} \subset C))\), since \(\Pi _{{{{a}_{{12}}}}}^{ + }(C,a)\) ⇌ \(\exists V({{J}_{{\left\langle {1,1} \right\rangle }}}(V{{ \Rightarrow }_{2}}a)\) & \((V \subset C)\& \neg \exists {{V}_{0}}\) \((({{J}_{{\left\langle { - 1,1} \right\rangle }}}({{V}_{0}}{{ \Rightarrow }_{2}}a) \vee {{J}_{{\left\langle {0,1} \right\rangle }}}({{V}_{0}}{{ \Rightarrow }_{2}}a))\) & \(({{V}_{0}} \subset C))\), let the value of the variable V be \(C{\kern 1pt} '\). Then \({{J}_{{\left\langle {1,1} \right\rangle }}}(C{\kern 1pt} '{{ \Rightarrow }_{2}}a)\) is true. Since \(({{J}_{{\left\langle {\tau ,0} \right\rangle }}}(C{\kern 1pt} '{{ \Rightarrow }_{2}}a)\& \) \(M_{{{{a}_{{12}}},0}}^{ + }\left( {C{\kern 1pt} ',a} \right)\) & ¬\(M_{{{{a}_{{12}}},0}}^{ + }\left( {C{\kern 1pt} ',a} \right) \leftrightarrow {{J}_{{\left\langle {1,1} \right\rangle }}}(C{\kern 1pt} '{{ \Rightarrow }_{2}}a)\) (this follows from the definition of p.i.r.-1 and the theorem of the reversibility of the inference rules p.i.r.-1 and p.i.r.-2 in the ARS JSM method [22, Ch. 5]).
Therefore, \(M_{{{{a}_{{12}}},0}}^{ + }\left( {C{\kern 1pt} ',a} \right)\) & ¬\(M_{{{{a}_{{12}}},0}}^{ - }\left( {C{\kern 1pt} ',a} \right)\) is true and \(M_{{{{a}_{{12}}},0}}^{ + }\left( {C{\kern 1pt} ',a} \right)\) is true. Then \(\exists {{X}_{1}} \ldots \) \(\exists {{X}_{k}}\left( {\left( {\& _{{i = 1}}^{k}} \right.} \right.{{J}_{{\left\langle {1,0} \right\rangle }}}\left( {{{X}_{i}}{{ \Rightarrow }_{1}}a} \right)\) & \(( \cap _{{i = 1}}^{k}{{X}_{i}} = C{\kern 1pt} ')\& \) \(\left( {k \geqslant 2} \right)\& \forall X\left( {\left( {{{J}_{{\left\langle {1,0} \right\rangle }}}\left( {X{{ \Rightarrow }_{1}}a} \right)\& } \right.} \right.\) \(\left. {\left( {C{\kern 1pt} ' \subset X} \right)} \right) \to \) \(\left. {\left( { \vee _{{i = 1}}^{k}\left( {{{X}_{i}} = X} \right)} \right)} \right)\) is true. Therefore, \(\exists {{X}_{i}}\left( {{{J}_{{\left\langle {1,0} \right\rangle }}}({{X}_{1}}{{ \Rightarrow }_{1}}a)} \right.\) & \((C{\kern 1pt} ' \subset X)\) & \({{J}_{{\left\langle {1,1} \right\rangle }}}\left( {\left. {\left. {C{\kern 1pt} '{{ \Rightarrow }_{2}}a} \right)} \right)} \right. \leftrightarrow \) \(\exists V\exists X\exists Y\left( {{{J}_{{\left\langle {1,1} \right\rangle }}}\left( {V{{ \Rightarrow }_{2}}Y} \right)} \right.\) & \((V \subset X)\) & \({{J}_{{\left\langle {1,0} \right\rangle }}}(X{{ \Rightarrow }_{1}}Y))\).
Therefore, the truth of \((**)\) implies the truth of \({{(\exists )}^{{( + )}}}\). It is obvious that a similar reasoning holds for the assumption of the truth of \(\exists X\exists Y\exists Y\Pi _{{{{a}_{{12}}}}}^{ - }(X,Y)\).
Obviously, since the truth of \((**)\) implies the truth of \({{(\exists )}^{{(\sigma )}}}\) and the truth of \({{(\exists )}^{{(\sigma )}}}\) implies the truth of \((*)\), the truth of \((**)\) implies the truth of \((*)\).
3. Operations of the lattice of intensions of M-predicates.
Table 4
0 | a | ag | ab | abg | aeg | abeg | afg | abfg |
---|---|---|---|---|---|---|---|---|
a | a | a | a | a | a | a | a | a |
ag | a | ag | a | ag | ag | ag | ag | ag |
ab | a | a | ab | ab | a | ab | a | ab |
abg | a | ag | ab | abg | ag | abg | ag | abg |
aeg | a | ag | a | ag | aeg | aeg | aeg | aeg |
abeg | a | ag | ab | abg | aeg | abeg | aeg | abeg |
afg | a | ag | a | ag | aeg | aeg | afg | afg |
abfg | a | ag | ab | abg | aeg | abeg | afg | abfg |
Table 5
\( \wedge \) | a | ag | ab | abg | aeg | abeg | afg | abfg |
---|---|---|---|---|---|---|---|---|
a | a | ag | ab | abg | aeg | abeg | afg | abfg |
ag | ag | ag | abg | abg | aeg | abeg | afg | abfg |
ab | ab | abg | ab | abg | abeg | abeg | abfg | abfg |
abg | abg | abg | abg | abg | abeg | abeg | abfg | abfg |
aeg | aeg | aeg | abeg | abeg | aeg | abeg | afg | abfg |
abeg | abeg | abeg | abeg | abeg | abeg | abeg | abfg | abfg |
afg | afg | afg | abfg | abfg | afg | abfg | afg | abfg |
abfg | abfg | abfg | abfg | abfg | abfg | abfg | abfg | abfg |
4. Let us construct an analytical table for (f → e) & (e → g) and obtain its disjunctive normal form \(\varphi \). We reduce \(\varphi \) to the perfect disjunctive normal form \(\psi \).
The branch ϴ3 is closed \((*)\).
\(\varphi = \neg e\neg f \vee \neg fg \vee eg,\) \(\varphi \leftrightarrow \psi \), where \(\psi = {{F}_{3}}(b,f,e,g)\) = \(bfeg \vee b\neg feg \vee b\neg f\neg eg \vee \) \(b\neg f\neg e\neg g \vee bfeg \vee b\neg feg\) \( \vee \,\,b\neg f\neg feg \vee \neg b\neg f\neg eg \vee \) \(b\neg f\neg e\neg g.\)
5. Relational system \(\bar {R}_{{}}^{{''}}\).
Thus, we obtain \({{\bar {D}}_{1}} = D_{1}^{ + } \cup D_{1}^{ - } \cup \) \(D_{1}^{\tau } \cup \tilde {D}_{1}^{ + } \cup \) \(\tilde {D}_{1}^{ - } \cup \tilde {D}_{1}^{\tau },\) \({{\bar {D}}_{2}} = \tilde {D}_{2}^{\tau } \cup \tilde {D}_{2}^{ + } \cup \tilde {D}_{2}^{ - }\), where \(V{{ \Rightarrow }_{{2(x,y)}}}Y\) is generated for x = (a12fgb)+ and y = (a12 fgb)–. It can be shown that \(\bar {\Re }{\kern 1pt} {''}\left| = \right.M_{{{{a}_{{12}}}fgb,0}}^{ + }\left( {AB,a} \right)\), \(\bar {\Re }{\kern 1pt} {''}\) ⊨ \(M_{{{{a}_{{12}}}fgb,0}}^{ + }\left( {DG,a} \right)\), \(\bar {\Re }{\kern 1pt} {''}\) ⊨ \(M_{{{{a}_{{12}}}fgb,0}}^{ - }\left( {RT,a} \right)\), \(\bar {\Re }{\kern 1pt} {''}\) ⊨ \(\left( {\left( {{{J}_{{\left( {\tau ,0} \right)}}}\left( {AB{{ \Rightarrow }_{2}}a} \right)} \right.} \right.\) & \(M_{{{{a}_{{12}}}fgb,0}}^{ + }\left( {AB,a} \right)\) & ¬\(\left. {M_{{{{a}_{{12}}}fgb,0}}^{ - }\left( {AB,a} \right)} \right)\) \( \to \) \(\left. {{{J}_{{\left\langle {1,1} \right\rangle }}}\left( {AB{{ \Rightarrow }_{2}}a} \right)} \right)\), where the predicate \(V{{ \Rightarrow }_{{2(x,y)}}}Y\) is generated.
The same holds for the pairs 〈DG, a〉 and 〈RT, a〉, which correspond to \(D_{2}^{\tau }\). We also obtain \(\bar {\Re }{\kern 1pt} {''}\)⊨ \(\left( {\left( {{{J}_{{\left( {\tau ,0} \right)}}}\left( {AB{{E}_{1}}{{ \Rightarrow }_{1}}a} \right)} \right.} \right.\) & \(\left. {\Pi _{1}^{ + }\left( {AB{{E}_{1}},a} \right)} \right) \to \) \(\left. {{{J}_{{\left\langle {1,2} \right\rangle }}}\left( {AB{{E}_{1}}{{ \Rightarrow }_{1}}a} \right)} \right)\).
The same holds for the pairs 〈DGE2, a〉, 〈RTF, a〉, and 〈MKN, a〉, which correspond to \(D_{1}^{\tau }\).
5. In [1], for each JSM reasoning strategy Strx ,y, the intension of the concept of “empirical regularity” AE was defined, the elements of which are \(A_{\chi }^{\sigma }\), where \(\sigma \in \left\{ { + , - } \right\}\), and \(\chi \in E\). \(A_{\chi }^{\sigma }\) were strengthened by an added existential condition, which meant replacing \(A_{\chi }^{\sigma }\) with \(\tilde {A}_{\chi }^{\sigma }\). This addition and replacement of \(A_{\chi }^{\sigma }\) with \(\tilde {A}_{\chi }^{\sigma }\) is redundant to determine the intension. However, such an addition of an existential condition is necessary to determine the extension of the concept of “empirical regularity”, the elements of which should be \(\tilde {A}_{\chi }^{\sigma }\left( {C{\kern 1pt} ',Q} \right)\), containing an existential condition. An example of an existential condition is
For each Strx, y we specify the corresponding relational system. Then, we consider \(\bar {\Re }_{{x,y}}^{{''}}\), where x = (a12 fgb)+ and y = (a12fgb)–.
It can be shown that \(\bar {\Re }_{{x,y}}^{{''}}\) ⊨ \(A_{\chi }^{\sigma }\), where \(\sigma \in \left\{ { + , - } \right\}\), \(\chi \in E\), and \(\bar {\Re }_{{x,y}}^{{''}}\) ⊨ \(\tilde {A}_{\chi }^{\sigma }\left( {C{\kern 1pt} ',Q} \right)\), if the existential condition is true.
About this article
Cite this article
Finn, V.K. JSM Reasoning and Knowledge Discovery: Ampliative Reasoning, Causality Recognition, and Three Kinds of Completeness#. Autom. Doc. Math. Linguist. 56, 79–110 (2022). https://doi.org/10.3103/S0005105522020066
Received:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S0005105522020066