Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

JSM Reasoning and Knowledge Discovery: Ampliative Reasoning, Causality Recognition, and Three Kinds of Completeness#

  • INTELLIGENT SYSTEMS
  • Published:
Automatic Documentation and Mathematical Linguistics Aims and scope

Abstract

Inductive inferences and inferences, by analogy with JSM reasoning, are characterized as ampliative inferences generating new knowledge. New predicates for inductive inference rules and their ordering are considered. The case of a single-element effect for the predicate “X has effect Y” is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. The fifth level of acceptance of the generated hypotheses is an M-sequence of modal operators of rank r, where r > 1, representing empirical regularities that are obtained by applying JSM reasoning r-fold to sequences of extensible fact bases [1, p. 22].

  2. Thus, the empirical patterns are a formalization of the idea of the knowledge-discovery process formulated in [2].

  3. To understand the definition of knowledge in a computer system, one should become familiarized with its definition in [5, p. 31].

  4. FB(0), FB(1), …, FB(s) is the sequence of expandable fact bases: FB(0) ⊂ FB(1) ⊂ … ⊂ FB(s).

  5. Note that the degree of plausibility of a fact is 0 and that of a hypothesis is greater than 0, since it represents the number of steps of a plausible inference.

  6. Since the truth values of JL formulas have the form \(\bar {v} = \left\langle {v,n} \right\rangle \), where \(v \in \left\{ {1, - 1,0,\tau } \right\}\), and \(n \in N\), the logic is infinite-valued.

  7. In the case |Y| =1, \({{J}_{{\left\langle {1,1} \right\rangle }}}\left( {{{V}_{i}} \Rightarrow _{2}^{{(P)}}{{Y}_{i}}} \right)\) and \({{J}_{{\left\langle {1,0} \right\rangle }}}\left( {X \Rightarrow _{1}^{{(P)}}Y} \right)\) are used.

  8. That is, similarities for (+)-examples and (–)-examples.

  9. For convenience of notation, we will represent finite sets {A, B, ..., P} as words AB...P; for example, we will represent {A, B, C} as АВС.

  10. Therefore, the relation \( \Rightarrow _{2}^{*}\) is not functional.

  11. The premises of p.i.r.-1 are the corresponding elements of the diagram for \({{\Re }_{1}}\), and the premises of p.i.r.-2 are the corresponding elements of the diagram for \({{\bar {\Re }}_{1}}\).

  12. In IS–JSM intelligent systems that implement the ARS JSM method [4, 19], D1,0(p) form a fact base.

  13. If CCA(σ) are true, then the admissible JSM reasoning is strong [5].

  14. This condition can be generalized to all Strx, y from [7]. The same holds true for the sufficient condition (**).

  15. Obviously, for strong admissible JSM reasoning ρσ(s) = 1, where σ = +,–.

  16. In Section 4 of this paper, possible strengthenings will be considered.

  17. Since \(X{{ \Rightarrow }_{1}}Y\) and \(V{{ \Rightarrow }_{2}}Y\) are defined with respect to relational systems and their corresponding D0,1(P), these primitive predicates depend on the parameter Р.

  18. In [8], J.S. Mill used the term agreement–difference. In the ARS JSM, the term similarity–difference is preferred.

  19. The elements of M have a superscript σ, where σ = +, –, which, for the sake of notation, will sometimes be omitted.

  20. Definitions of operations and are contained in the Appendix.

  21. φ is obtained in the Appendix.

  22. Indices (P) and (x, y) will sometimes be omitted for convenience of notation.

  23. In the Appendix, the relational system \({{\bar {\Re }}_{f}}\) is considered such that the predicates \(M_{{{{a}_{{12}}}fg,0}}^{\sigma }\left( {V,Y} \right)\) are satisfiable in it.

  24. Part II of this article will deal with the cases when |Y| > 1 and there is ¬α.

  25. The content of this section assumes familiarity with papers [1, 5].

  26. They are empirical nomological statements [1, 26].

  27. This means strengthened realization of the scientific research demarcation criterion [27].

  28. This definition is formulated for computer systems that implement the ARS JSM method.

  29. We intend to consider the Boolean function F2() for the case |Y | > 1 in the second part of this article.

  30. The sets \(\overline {Str} \times A_{E}^{\sigma }\) are partially ordered with the largest and smallest element for σ = +, –, respectively.

  31. Recall that \(A_{\chi }^{\sigma }\) is an element of the intension of the concept of empirical regularity and \(A_{\chi }^{\sigma }(C{\kern 1pt} ',\,\,Q)\) is an extension element of this concept.

  32. Situational JSM reasoning is obviously in demand for the analysis of sociological data. Note also that there are cases when V = Ø or S = Ø.

  33. We intend to consider this problem in the second part of this article.

REFERENCES

  1. Finn, V.K., Exact epistemology and artificial intelligence, Autom. Docum. Math. Linguist., 2020, vol. 54, pp. 140–173.  https://doi.org/10.3103/S0005105520030073

    Article  Google Scholar 

  2. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., Advances in Knowledge Discovery and Data Mining, Cambridge: The AAAI Press, 1996.

    Google Scholar 

  3. Finn, V.K., On the intellectual data analysis, Novosti Iskusstv. Intell., 2004, no. 3, pp. 3–17.

  4. Finn, V.K. and Shesternikova, O.P., The heuristics of detection of empirical regularities by JSM reasoning, Autom. Docum. Math. Linguist., 2018, vol. 52, pp. 215–247.  https://doi.org/10.3103/S0005105518050023

    Article  Google Scholar 

  5. Finn, V.K., On the heuristics of JSM research (additions to articles), Autom. Docum. Math. Linguist., 2019, vol. 53, pp. 250–282.  https://doi.org/10.3103/S0005105519050078

    Article  Google Scholar 

  6. Rosser, J.B. and Turquette, A.R., Many-Valued Logics, Amsterdam: North-Holland, 1958.

    MATH  Google Scholar 

  7. Finn, V.K., Distributive lattices of inductive JSM procedures, Autom. Docum. Math. Linguist., 2014, vol. 48, pp. 265–295.  https://doi.org/10.3103/S0005105514060028

    Article  Google Scholar 

  8. Mill, J.S., A System of Logic Ratiocinative and Inductive, Being a Connected View of Principles of Evidence and the Methods of Scientific Investigation, London: Parker, Son and Bowin, 1843.

    Book  Google Scholar 

  9. Fann, K.T., Peirce’s Theory of Abduction, The Hague: Martinus Nijhoff Publishers, 1970.

    Book  Google Scholar 

  10. Skvortsov, D.P., On some ways of constructing logical languages with quantors by tuples, Semiotika Inf., 1983, no. 20, pp. 102–126.

  11. Handbook of Mathematical Logic, Barvais, D., Ed., Amsterdam: North-Holland, 1977.

    Google Scholar 

  12. Anshakov, O.M., Finn, V.K., and Skvortsov, D.P., On axiomatization of many-valued logics associated with formalization of plausible reasoning, Stud. Logica, 1989, vol. 48, pp. 423–447.  https://doi.org/10.1007/BF00370198

    Article  MathSciNet  MATH  Google Scholar 

  13. Finn, V.K., A form of argumentation logic, Autom. Docum. Math. Linguist., 1996, vol. 3, no. 3, pp. 3–27.

    Google Scholar 

  14. Finn, V.K., On the class of JSM reasoning that uses the isomorphism of inductive inference rules, Sci. Tech. Inf. Process., 2017, vol. 44, pp. 387–396.  https://doi.org/10.3103/S0147688217060041

    Article  Google Scholar 

  15. Reichenbach, H., Elements of Symbolic Logic, New York: Macmillan, 1947.

    MATH  Google Scholar 

  16. Mal’tsev, A.I., Algebraicheskie sistemy (Algebraic Systems), Moscow: Nauka, 1970.

  17. Weingartner, P., Basic Question of Truth, Dordrecht: Kluver Academic Publishers, 2000.

    Book  Google Scholar 

  18. Rescher, N., The Coherence Theory of Truth, Oxford: The Clarendon Press, 1973.

    Google Scholar 

  19. Finn, V.K., Iskusstvennyi intellekt (metodologiya, primeneniya, filosofiya) (Artificial Intelligence: Methodology, Applications, and Philosophy), Moscow: LENAND, 2021, 2nd ed.

  20. Grätzer, G., General Lattice Theory, Berlin: Academic-Verlag, 1978.

    Book  Google Scholar 

  21. Smullyan, R.M., First-Order Logic, New York: Springer-Verlag, 1968.

    Book  Google Scholar 

  22. DSM-metod avtomaticheskogo porozhdeniya gipotez: logicheskie i epistemologicheskie osnovaniya (JSM Method of Automatic Hypotheses Generation: Logical and Epistemological Foundations), Moscow: Librokom, 2009.

  23. Frege, G., On sense and meaning, Logika i logicheskaya semantika (Logic and Logical Semantic), Moscow: Aspekt Press, 2000.

    Google Scholar 

  24. Finn, V.K., On the non-Aristotelian concept structure, Logicheskie Issled., 2015, vol. 21, no. 1, pp. 9–48.  https://doi.org/10.21146/2074-1472-2015-21-1-9-48

    Article  MathSciNet  MATH  Google Scholar 

  25. Gillies, D., Artificial Intelligence and Scientific Method, New York: Oxford Univ. Press, 1996.

    MATH  Google Scholar 

  26. Reichenbach, H., Nomological Statement and Admissible Operations, Amsterdam: North-Holland, 1954.

    MATH  Google Scholar 

  27. Popper, K.R., Objective Knowledge: An Evolutionary Approach, Oxford: Clarendon Press, 1979.

    Google Scholar 

  28. McCarthy, D. and Hayes, P.J., Some philosophical problems from the standpoint of artificial intelligence, Mach. Intell., 1979, no. 4, pp. 463–502.

  29. Bridgman, P.W., The nature of some of our physical concepts: I, Br. J. Philos. Sci., 1951, vol. 1, no. 4, pp. 257–272.  https://doi.org/10.1093/bjps/I.4.257

    Article  Google Scholar 

  30. Kant, I., Kritik der reinen Vernunft, Riga: Johann Friedrich Hartknoch, 1781.

    Google Scholar 

  31. Finn, V.K., J.S. Mill’s inductive methods in artificial intelligence systems. Part I, Sci. Tech. Inf. Process., 2011, vol. 37, no. 6, pp. 385–402.  https://doi.org/10.3103/S0147688211060037

    Article  Google Scholar 

  32. Finn, V.K., J.S. Mill’s inductive methods in artificial intelligence systems. Part II, Sci. Tech. Inf. Process., 2012, vol. 39, no. 5, pp. 241–260.  https://doi.org/10.3103/S0147688212050036

    Article  Google Scholar 

  33. Finn, V.K. and Mikheyenkova, M.A., Situation extension of the JSM automatic hypotheses generation method, Autom. Docum. Math. Linguist., 2000, vol. 34, no. 6, pp. 11–26.

    Google Scholar 

  34. Finn, V.K. and Shesternikova, O.P., A new variant of the generalized JSM-method for automatic support of scientific research, Sci. Tech. Inf. Process., 2017, vol. 44, no. 5, pp. 338–344.  https://doi.org/10.3103/S0147688217050045

    Article  Google Scholar 

  35. Anshakov, O.M., Skvortsov, D.P., and Finn, V.K., On deductive imitation of some variants of the JSM method of automatic hypotheses generation, Semiotika Inf., 1988, no. 33, pp. 164–233.

  36. Finn, V.K., Foreword to the second edition, Iskusstvennyi intellekt (Artificial Intelligence), Moscow; LENAND, 2021, 2nd ed., pp. 14–31.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Finn.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by S. Avodkova

#In the presented part of the article, we study the case of a singleton effect for the predicate “X has effect Y”. We intend to consider the Boolean function F2(\(\alpha ,\beta ,\gamma \)) for the case |Y| > 1 in the second part of this article.

APPENDIX

APPENDIX

1. Using the method of analytic tables [21], we prove the proposition from Section 3: \({{(\exists )}^{{(\sigma )}}}\)\((*)\), where σ = +, –, “⊢” is the deducibility ratio, \((*)\) is ∃VY (\((M_{{{{a}_{{12,0}}}}}^{ + }\left( {V,Y} \right) \vee M_{{{{a}_{{12,0}}}}}^{ - }\left( {V,Y} \right))\), and \({{(\exists )}^{{( + )}}}\) is ∃VXY \(({{J}_{{\left\langle {1,1} \right\rangle }}}(V{{ \Rightarrow }_{2}}Y)\) & \({{J}_{{\left\langle {1,0} \right\rangle }}}(X{{ \Rightarrow }_{1}}Y)\) & \((V \subset X))\).

VY(\(M_{{{{a}_{{12}}},0}}^{ + }\left( {V,Y} \right)\) \( \cap , \cup ,\) \(M_{{{{a}_{{12}}},0}}^{ - }\left( {V,Y} \right)\)) ↔ (∃VY\(M_{{{{a}_{{12}}},0}}^{ + }\left( {V,Y} \right)\) \(\left\langle {C,a} \right\rangle \in R_{1}^{ + };\)VY\(M_{{{{a}_{{12}}},0}}^{ - }\left( {V,Y} \right)\)).

Let us denote the closed formula ∃VY\(M_{{{{a}_{{12}}},0}}^{ - }\left( {V,Y} \right)\) through \(\varphi \); then \((*)\) we represent as ∃VY.

For the sake of simplicity of notation, we introduce the following notation:

Р(V,Y) instead of,

S(V, Y) instead of,

Q(V, Y) instead of,

L(V, X) instead of (V X),

a K(X, Y) instead of.

Then we obtain ∃VXY(S(V, Y) & P(V, Y) & Q(VY) & K(X, Y) & L(X, Y) ⊢ ∃VYP(V, Y).

Let us construct an analytical table F.

VXY(S(V, Y) & P(V, Y) & Q(V, Y) & K(X, Y) & L(X, Y)

¬(∃VYP(V, Y) \( \vee \,\,\varphi \))

¬∃VYP(V, Y)

¬\(\varphi \)

S(a, b) & P(a, b) & Q(a, b) & K(c, b) & L(c, b)

S(a, b)

P(a, b)

Q(a, b)

K(c, b)

L(c, b)

¬P(a, b)

\(*\)

F is a closed analytical table. a, b, c are the parameters.

In a similar way, we will show that (∃)⊢. The above proposition can be extended to any JSM reasoning strategy Strx, y.

2. \((**)\) is \(\exists X\exists Y\left( {\Pi _{{{{a}_{{12}}}}}^{ + }\left( {X,Y} \right) \vee } \right.\left. {\Pi _{{{{a}_{{12}}}}}^{ - }\left( {X,Y} \right)} \right),\) \({{\left( \exists \right)}^{{\left( \sigma \right)}}}\) is \(\exists V\exists X\exists Y\left( {{{J}_{{\left\langle {v,1} \right\rangle }}}\left( {V{{ \Rightarrow }_{2}}Y} \right)} \right.\) & \({{J}_{{\left\langle {v,o} \right\rangle }}}\left( {X{{ \Rightarrow }_{1}}Y} \right)\) & \((V \subset X))\), where \(v = \left\{ \begin{gathered} 1,\,\,\,\,{\text{if}}\,\,\,\sigma = + \hfill \\ - 1,\,\,\,\,{\text{if}}\,\,\,\sigma = - \hfill \\ \end{gathered} \right.\) \(\exists X\exists Y\left( {\Pi _{{{{a}_{{12}}}}}^{ + }\left( {X,Y} \right)} \right.\) \( \vee \) \(\left. {\Pi _{{{{a}_{{12}}}}}^{ - }\left( {X,Y} \right)} \right)\) \( \leftrightarrow \) \(\left( {\exists X\exists Y\Pi_{{{{a}_{{12}}}}}^{ + }\left( {X,Y} \right) \vee } \right.\) \(\exists X\exists Y\left. {\Pi _{{{{a}_{{12}}}}}^{ - }\left( {X,Y} \right)} \right)\).

Let us show that the truth of \((**)\) implies the truth of \({{(\exists )}^{{(\sigma )}}}\), where σ = +, –.

Let us assume that \((**)\) is true. Without loss of generality, let us assume that \(\exists X\exists Y\Pi _{{{{a}_{{12}}}}}^{ + }(X,Y)\). Then \(\Pi _{{{{a}_{{12}}}}}^{ + }(C,a)\) is true, where С are the individual constants. Let us consider \({{J}_{{\left\langle {1,1} \right\rangle }}}(C{\kern 1pt} '{{ \Rightarrow }_{2}}a)\) & \((C{\kern 1pt} ' \subset C)\) & \(\neg \exists {{V}_{0}}\left( {{{J}_{{\left\langle { - 1,1} \right\rangle }}}({{V}_{0}}{{ \Rightarrow }_{2}}a)} \right.\) \( \vee {{J}_{{\left\langle {0,1} \right\rangle }}}({{V}_{0}}{{ \Rightarrow }_{2}}a))\) & \(({{V}_{0}} \subset C))\), since \(\Pi _{{{{a}_{{12}}}}}^{ + }(C,a)\)\(\exists V({{J}_{{\left\langle {1,1} \right\rangle }}}(V{{ \Rightarrow }_{2}}a)\) & \((V \subset C)\& \neg \exists {{V}_{0}}\) \((({{J}_{{\left\langle { - 1,1} \right\rangle }}}({{V}_{0}}{{ \Rightarrow }_{2}}a) \vee {{J}_{{\left\langle {0,1} \right\rangle }}}({{V}_{0}}{{ \Rightarrow }_{2}}a))\) & \(({{V}_{0}} \subset C))\), let the value of the variable V be \(C{\kern 1pt} '\). Then \({{J}_{{\left\langle {1,1} \right\rangle }}}(C{\kern 1pt} '{{ \Rightarrow }_{2}}a)\) is true. Since \(({{J}_{{\left\langle {\tau ,0} \right\rangle }}}(C{\kern 1pt} '{{ \Rightarrow }_{2}}a)\& \) \(M_{{{{a}_{{12}}},0}}^{ + }\left( {C{\kern 1pt} ',a} \right)\) & ¬\(M_{{{{a}_{{12}}},0}}^{ + }\left( {C{\kern 1pt} ',a} \right) \leftrightarrow {{J}_{{\left\langle {1,1} \right\rangle }}}(C{\kern 1pt} '{{ \Rightarrow }_{2}}a)\) (this follows from the definition of p.i.r.-1 and the theorem of the reversibility of the inference rules p.i.r.-1 and p.i.r.-2 in the ARS JSM method [22, Ch. 5]).

Therefore, \(M_{{{{a}_{{12}}},0}}^{ + }\left( {C{\kern 1pt} ',a} \right)\) & ¬\(M_{{{{a}_{{12}}},0}}^{ - }\left( {C{\kern 1pt} ',a} \right)\) is true and \(M_{{{{a}_{{12}}},0}}^{ + }\left( {C{\kern 1pt} ',a} \right)\) is true. Then \(\exists {{X}_{1}} \ldots \) \(\exists {{X}_{k}}\left( {\left( {\& _{{i = 1}}^{k}} \right.} \right.{{J}_{{\left\langle {1,0} \right\rangle }}}\left( {{{X}_{i}}{{ \Rightarrow }_{1}}a} \right)\) & \(( \cap _{{i = 1}}^{k}{{X}_{i}} = C{\kern 1pt} ')\& \) \(\left( {k \geqslant 2} \right)\& \forall X\left( {\left( {{{J}_{{\left\langle {1,0} \right\rangle }}}\left( {X{{ \Rightarrow }_{1}}a} \right)\& } \right.} \right.\) \(\left. {\left( {C{\kern 1pt} ' \subset X} \right)} \right) \to \) \(\left. {\left( { \vee _{{i = 1}}^{k}\left( {{{X}_{i}} = X} \right)} \right)} \right)\) is true. Therefore, \(\exists {{X}_{i}}\left( {{{J}_{{\left\langle {1,0} \right\rangle }}}({{X}_{1}}{{ \Rightarrow }_{1}}a)} \right.\) & \((C{\kern 1pt} ' \subset X)\) & \({{J}_{{\left\langle {1,1} \right\rangle }}}\left( {\left. {\left. {C{\kern 1pt} '{{ \Rightarrow }_{2}}a} \right)} \right)} \right. \leftrightarrow \) \(\exists V\exists X\exists Y\left( {{{J}_{{\left\langle {1,1} \right\rangle }}}\left( {V{{ \Rightarrow }_{2}}Y} \right)} \right.\) & \((V \subset X)\) & \({{J}_{{\left\langle {1,0} \right\rangle }}}(X{{ \Rightarrow }_{1}}Y))\).

Therefore, the truth of \((**)\) implies the truth of \({{(\exists )}^{{( + )}}}\). It is obvious that a similar reasoning holds for the assumption of the truth of \(\exists X\exists Y\exists Y\Pi _{{{{a}_{{12}}}}}^{ - }(X,Y)\).

Obviously, since the truth of \((**)\) implies the truth of \({{(\exists )}^{{(\sigma )}}}\) and the truth of \({{(\exists )}^{{(\sigma )}}}\) implies the truth of \((*)\), the truth of \((**)\) implies the truth of \((*)\).

3. Operations of the lattice of intensions of M-predicates.

Table 4

0

a

ag

ab

abg

aeg

abeg

afg

abfg

a

a

a

a

a

a

a

a

a

ag

a

ag

a

ag

ag

ag

ag

ag

ab

a

a

ab

ab

a

ab

a

ab

abg

a

ag

ab

abg

ag

abg

ag

abg

aeg

a

ag

a

ag

aeg

aeg

aeg

aeg

abeg

a

ag

ab

abg

aeg

abeg

aeg

abeg

afg

a

ag

a

ag

aeg

aeg

afg

afg

abfg

a

ag

ab

abg

aeg

abeg

afg

abfg

Table 5

\( \wedge \)

a

ag

ab

abg

aeg

abeg

afg

abfg

a

a

ag

ab

abg

aeg

abeg

afg

abfg

ag

ag

ag

abg

abg

aeg

abeg

afg

abfg

ab

ab

abg

ab

abg

abeg

abeg

abfg

abfg

abg

abg

abg

abg

abg

abeg

abeg

abfg

abfg

aeg

aeg

aeg

abeg

abeg

aeg

abeg

afg

abfg

abeg

abeg

abeg

abeg

abeg

abeg

abeg

abfg

abfg

afg

afg

afg

abfg

abfg

afg

abfg

afg

abfg

abfg

abfg

abfg

abfg

abfg

abfg

abfg

abfg

abfg

4. Let us construct an analytical table for (fe) & (eg) and obtain its disjunctive normal form \(\varphi \). We reduce \(\varphi \) to the perfect disjunctive normal form \(\psi \).

$$\begin{gathered} f \to e \\ e \to g \\ \begin{array}{*{20}{c}} {}&{\neg f}&| & e&{} \\ {\neg \left. e \right|}&g&| & {\neg \left. e \right|}&g \end{array} \\ \begin{array}{*{20}{c}} {{{\Theta }_{1}}}&{{{\Theta }_{2}}}&{\Theta _{3}^{*}}&{{{\Theta }_{4}}} \end{array} \\ \end{gathered} $$

The branch ϴ3 is closed \((*)\).

\(\varphi = \neg e\neg f \vee \neg fg \vee eg,\) \(\varphi \leftrightarrow \psi \), where \(\psi = {{F}_{3}}(b,f,e,g)\) = \(bfeg \vee b\neg feg \vee b\neg f\neg eg \vee \) \(b\neg f\neg e\neg g \vee bfeg \vee b\neg feg\) \( \vee \,\,b\neg f\neg feg \vee \neg b\neg f\neg eg \vee \) \(b\neg f\neg e\neg g.\)

5. Relational system \(\bar {R}_{{}}^{{''}}\).

$$\left. \begin{gathered} {{J}_{{\left\langle {1,0} \right\rangle }}}\left( {AB{{C}_{1}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle {1,0} \right\rangle }}}\left( {AB{{C}_{2}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle {1,0} \right\rangle }}}\left( {DG{{C}_{3}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle {1,0} \right\rangle }}}\left( {DG{{C}_{4}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle {1,0} \right\rangle }}}\left( {{{N}_{1}}{{L}_{1}}{{S}_{1}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle {1,0} \right\rangle }}}\left( {{{N}_{2}}{{L}_{2}}{{S}_{2}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ \end{gathered} \right\}D_{1}^{ + }$$
$$\left. \begin{gathered} {{J}_{{\left\langle { - 1,0} \right\rangle }}}\left( {{{P}_{1}}{{Q}_{1}}{{C}_{1}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle { - 1,0} \right\rangle }}}\left( {{{P}_{2}}{{Q}_{2}}{{C}_{2}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle { - 1,0} \right\rangle }}}\left( {{{K}_{1}}{{L}_{1}}{{C}_{3}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle { - 1,0} \right\rangle }}}\left( {{{K}_{2}}{{L}_{2}}{{C}_{4}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle { - 1,0} \right\rangle }}}\left( {RT{{S}_{1}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle { - 1,0} \right\rangle }}}\left( {RT{{S}_{2}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ \end{gathered} \right\}D_{1}^{ - }$$
$$\left. \begin{gathered} {{J}_{{\left\langle {\tau ,0} \right\rangle }}}(AB{{ \Rightarrow }_{2}}a) \hfill \\ {{J}_{{\left\langle {\tau ,0} \right\rangle }}}(DG{{ \Rightarrow }_{2}}a) \hfill \\ {{J}_{{\left\langle {\tau ,0} \right\rangle }}}(RT{{ \Rightarrow }_{2}}a) \hfill \\ \end{gathered} \right\}D_{2}^{\tau }$$
$$\begin{gathered} \left. \begin{gathered} {{J}_{{\left\langle {\tau ,0} \right\rangle }}}\left( {AB{{E}_{1}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle {\tau ,0} \right\rangle }}}\left( {DG{{E}_{2}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle {\tau ,0} \right\rangle }}}\left( {RTF{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle {\tau ,0} \right\rangle }}}\left( {MKN{{ \Rightarrow }_{1}}a} \right) \hfill \\ \end{gathered} \right\}D_{1}^{\tau } \hfill \\ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \hfill \\ \end{gathered} $$
$$\left. \begin{gathered} {{J}_{{\left\langle {1,1} \right\rangle }}}\left( {AB{{ \Rightarrow }_{2}}a} \right) \hfill \\ {{J}_{{\left\langle {1,1} \right\rangle }}}\left( {DG{{ \Rightarrow }_{2}}a} \right) \hfill \\ \end{gathered} \right\}\tilde {D}_{2}^{ + }$$
$$\begin{gathered} \left. {{{J}_{{\left\langle { - 1,1} \right\rangle }}}\left( {RT{{ \Rightarrow }_{2}}a} \right)} \right\}\tilde {D}_{2}^{ - } \hfill \\ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \hfill \\ \end{gathered} $$
$$\left. \begin{gathered} {{J}_{{\left\langle {1,2} \right\rangle }}}\left( {AB{{E}_{1}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ {{J}_{{\left\langle {1,2} \right\rangle }}}\left( {DG{{E}_{2}}{{ \Rightarrow }_{1}}a} \right) \hfill \\ \end{gathered} \right\}\tilde {D}_{1}^{ + }$$
$$\left. {{{J}_{{\left\langle { - 1,2} \right\rangle }}}\left( {RTF{{ \Rightarrow }_{1}}a} \right)} \right\}\tilde {D}_{1}^{ - }$$
$$\left. {{{J}_{{\left( {\tau ,2} \right)}}}\left( {MKN{{ \Rightarrow }_{1}}a} \right)} \right\}\tilde {D}_{1}^{\tau }$$

Thus, we obtain \({{\bar {D}}_{1}} = D_{1}^{ + } \cup D_{1}^{ - } \cup \) \(D_{1}^{\tau } \cup \tilde {D}_{1}^{ + } \cup \) \(\tilde {D}_{1}^{ - } \cup \tilde {D}_{1}^{\tau },\) \({{\bar {D}}_{2}} = \tilde {D}_{2}^{\tau } \cup \tilde {D}_{2}^{ + } \cup \tilde {D}_{2}^{ - }\), where \(V{{ \Rightarrow }_{{2(x,y)}}}Y\) is generated for x = (a12fgb)+ and y = (a12fgb). It can be shown that \(\bar {\Re }{\kern 1pt} {''}\left| = \right.M_{{{{a}_{{12}}}fgb,0}}^{ + }\left( {AB,a} \right)\), \(\bar {\Re }{\kern 1pt} {''}\)\(M_{{{{a}_{{12}}}fgb,0}}^{ + }\left( {DG,a} \right)\), \(\bar {\Re }{\kern 1pt} {''}\)\(M_{{{{a}_{{12}}}fgb,0}}^{ - }\left( {RT,a} \right)\), \(\bar {\Re }{\kern 1pt} {''}\)\(\left( {\left( {{{J}_{{\left( {\tau ,0} \right)}}}\left( {AB{{ \Rightarrow }_{2}}a} \right)} \right.} \right.\) & \(M_{{{{a}_{{12}}}fgb,0}}^{ + }\left( {AB,a} \right)\) & ¬\(\left. {M_{{{{a}_{{12}}}fgb,0}}^{ - }\left( {AB,a} \right)} \right)\) \( \to \) \(\left. {{{J}_{{\left\langle {1,1} \right\rangle }}}\left( {AB{{ \Rightarrow }_{2}}a} \right)} \right)\), where the predicate \(V{{ \Rightarrow }_{{2(x,y)}}}Y\) is generated.

The same holds for the pairs 〈DG, a〉 and 〈RT, a〉, which correspond to \(D_{2}^{\tau }\). We also obtain \(\bar {\Re }{\kern 1pt} {''}\)\(\left( {\left( {{{J}_{{\left( {\tau ,0} \right)}}}\left( {AB{{E}_{1}}{{ \Rightarrow }_{1}}a} \right)} \right.} \right.\) & \(\left. {\Pi _{1}^{ + }\left( {AB{{E}_{1}},a} \right)} \right) \to \) \(\left. {{{J}_{{\left\langle {1,2} \right\rangle }}}\left( {AB{{E}_{1}}{{ \Rightarrow }_{1}}a} \right)} \right)\).

The same holds for the pairs 〈DGE2, a〉, 〈RTF, a〉, and 〈MKN, a〉, which correspond to \(D_{1}^{\tau }\).

5. In [1], for each JSM reasoning strategy Strx ,y, the intension of the concept of “empirical regularity” AE was defined, the elements of which are \(A_{\chi }^{\sigma }\), where \(\sigma \in \left\{ { + , - } \right\}\), and \(\chi \in E\). \(A_{\chi }^{\sigma }\) were strengthened by an added existential condition, which meant replacing \(A_{\chi }^{\sigma }\) with \(\tilde {A}_{\chi }^{\sigma }\). This addition and replacement of \(A_{\chi }^{\sigma }\) with \(\tilde {A}_{\chi }^{\sigma }\) is redundant to determine the intension. However, such an addition of an existential condition is necessary to determine the extension of the concept of “empirical regularity”, the elements of which should be \(\tilde {A}_{\chi }^{\sigma }\left( {C{\kern 1pt} ',Q} \right)\), containing an existential condition. An example of an existential condition is

For each Strx, y we specify the corresponding relational system. Then, we consider \(\bar {\Re }_{{x,y}}^{{''}}\), where x = (a12fgb)+ and y = (a12fgb).

It can be shown that \(\bar {\Re }_{{x,y}}^{{''}}\)\(A_{\chi }^{\sigma }\), where \(\sigma \in \left\{ { + , - } \right\}\), \(\chi \in E\), and \(\bar {\Re }_{{x,y}}^{{''}}\)\(\tilde {A}_{\chi }^{\sigma }\left( {C{\kern 1pt} ',Q} \right)\), if the existential condition is true.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finn, V.K. JSM Reasoning and Knowledge Discovery: Ampliative Reasoning, Causality Recognition, and Three Kinds of Completeness#. Autom. Doc. Math. Linguist. 56, 79–110 (2022). https://doi.org/10.3103/S0005105522020066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0005105522020066

Keywords:

Navigation