Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Trust Evaluation Problems in Big Data Analytics

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

This paper considers the problem of trust evaluation in complex computer-aided data analysis. We use a well-known approach that consists of constructing empirical regularities based on measures of use case similarity in the training sample. Trust is approximated by modeling training data with the use of a random sample from an unknown distribution. This approach implements approximate causal analysis and has advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Poltavtseva, M., Shelupanov, A., Bragin, D., Zegzhda, D., and Alexandrova, E., Key concepts of systemological approach to CPS adaptive information security monitoring, Symmetry, 2021, vol. 13, no. 12, p. 2425.  https://doi.org/10.3390/sym13122425

    Article  Google Scholar 

  2. Zegzhda, D., Pavlenko, E., and Aleksandrova, E., Modelling artificial immunization processes to counter cyberthreats, Symmetry, 2021, vol. 13, no. 12, p. 2453.  https://doi.org/10.3390/sym13122453

    Article  Google Scholar 

  3. Zegzhda, D.P., Vasil’ev, Yu.S., Poltavtseva, M.A., Approaches to modeling the security of cyberphysical systems, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1000–1009.  https://doi.org/10.3103/S014641161808031X

    Article  Google Scholar 

  4. Rudakov, K.V., Universal and local constraints in the problem of correction of heuristic algorithms, Cybernetics Syst. Anal., 1987, vol. 23, pp. 181–186.  https://doi.org/10.1007/BF01071774

    Article  MATH  Google Scholar 

  5. Zhuravlev, Yu.I., Correct algebras over sets of incorrect (Heuristic) algorithms. I, Cybern. Syst. Anal., 1977, vol. 13, pp. 489–497.  https://doi.org/10.1007/BF01069539

    Article  MATH  Google Scholar 

  6. Zhuravlev, Yu.I., Correct algebras over sets of incorrect (Heuristic) algorithms. II. Cybern. Syst. Anal., 1977, vol. 13, pp. 814–821.  https://doi.org/10.1007/BF01068848

    Article  MATH  Google Scholar 

  7. Zhuravlev, Y.I., Correct algebras over sets of incorrect (Heuristic) algorithms. III. Cybern. Syst. Anal., 1978, vol. 14, pp. 188–197.  https://doi.org/10.1007/BF01069349

    Article  MATH  Google Scholar 

  8. Zegzhda, P.D., Poltavtseva, M.A., Pechenkin, A.I., Lavrova, D.S., and Zaitseva, E.A., A use case analysis of heterogeneous semistructured objects in information security problems, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 918–930.  https://doi.org/10.3103/S0146411618080278

    Article  Google Scholar 

  9. Poltavtseva, M.A. and Pechenkin, A.I., Intelligent data analysis in decision support systems for penetration tests, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 985–991. https://doi.org/10.3103/S014641161708017X

    Article  Google Scholar 

  10. DARPA sets up fast track for third wave AI, 2018. https://defence.pk/pdf/threads/darpa-sets-up-fast-track-for-third-wave-ai.569563/.

  11. Gunning, D. and Aha, D.W., DARPA’s explainable artificial intelligence (XAI) program, AI Mag., 2019, vol. 40, no. 2, pp. 44–58.  https://doi.org/10.1609/aimag.v40i2.2850

    Article  Google Scholar 

  12. Grusho, A.A., Grusho, N.A., Zabezhailo, M.I., and Timonina, E.E., Protection of valuable information in public information space, ECMS 2019 Proc., Iacono, M., Palmieri, F., Gribaudo, M., and Ficco, M., Eds., European Council for Modeling and Simulation, 2019.  https://doi.org/10.7148/2019-0451

    Book  MATH  Google Scholar 

  13. Grusho, A., Mathematical models of the covert channels, Information Assurance in Computer Networks. MMM-ACNS 2001, Gorodetski, V.I., Skormin, V.A., and Popyack, L.J., Eds., Lecture Notes in Computer Science, vol. 2052, Berlin: Springer, 2001, pp. 15–20.https://doi.org/10.1007/3-540-45116-1_2

    Book  Google Scholar 

  14. Grusho, A., Timonina, E., and Shorgin, S., Security models based on stochastic meta data, Analytical and Computational Methods in Probability Theory. ACMPT 2017, Rykov, V., Singpurwalla, N., and Zubkov, A., Eds., Lecture Notes in Computer Science, vol. 10684. Cham: Springer, 2017, pp. 388–400. https://doi.org/10.1007/978-3-319-71504-9_32

    Book  MATH  Google Scholar 

  15. Grusho, A., Grusho, N., Zabezhailo, M., and Timonina, E., Evaluation of trust in computer-computed results, Distributed Computer and Communication Networks. DCCN 2021, Vishnevskiy, V.M., Samouylov, K.E., and Kozyrev, D.V., Eds., Communications in Computer and Information Science, vol. 1552. Cham: Springer, 2022, pp. 420–432.  https://doi.org/10.1007/978-3-030-97110-6_33.

  16. Grusho, A.A., Timonina, E.E., and Shorgin, S.Y., Modelling for ensuring information security of the distributed information systems, 31st European Conf. on Modeling and Simulation ECMS 2017, Budapest, 2017, pp. 656–660.  https://doi.org/10.7148/2017-0656

  17. Grusho, A., Grusho, N., and Timonina, E., Method of several information spaces for identification of anomalies, Intelligent Distributed Computing XIII. IDC 2019, Kotenko, I., Badica, C., Desnitsky, V., El Baz, D., and Ivanovic, M., Eds., Studies in Computational Intelligence, vol. 868, Cham: Springer, 2020, pp. 515–520. https://doi.org/10.1007/978-3-030-32258-8_60

  18. Grusho, A., Nikolaev, V., Piskovski, V., Sentchilo, and Timonina, E., Endpoint cloud terminal as an approach to secure the use of an enterprise private cloud, 2020 Int. Sci. Tech. Conf. Modern Computer Network Technologies (MoNeTeC), Moscow, 2020, IEEE, 2020, pp. 1–4.  https://doi.org/10.1109/MoNeTeC49726.2020.9258244

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Grusho.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Kornienko

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grusho, A.A., Grusho, N.A., Zabezhailo, M.I. et al. Trust Evaluation Problems in Big Data Analytics. Aut. Control Comp. Sci. 56, 847–851 (2022). https://doi.org/10.3103/S0146411622080077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411622080077

Keywords:

Navigation