Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Absolutely robust control systems

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

A new approach to constructing robust feedback control systems for nonlinear nonstationary SISO plants with an incomplete mathematical model is proposed. Based on the Lyapunov function method, the initial system is transformed into a degenerate linear system (reduced system) with components of a model of an indeterminate plant being involved in its right part. The robust control strategy lies in suppressing a plant’s model as a potential source of parasite dynamics and reducing the reduced system to a homogeneous equation. The proposed OBS suppressor hyperobserver of a model’s dynamics allows one to reduce the effect of various uncertainties to an indefinitely small value with the simultaneous preservation of the desired dynamics of the reduced system. The desired qualitative characteristics of the reduced system are set by choosing the tuning parameters of a PD controller of the (n − 1)th order. The contrastive analysis of the solutions to a benchmark problem using the Matlab/Simulink package leads to a number of conclusions that are of great practical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A., State-space solutions to standard H 2 and H control problems, IEEE Trans. Autom. Control, 1989, vol. 34, pp. 831–847.

    Article  MathSciNet  MATH  Google Scholar 

  2. Dorato, P.U., Parameter design example: Robust flight control for windshear protection, Proc. 29th Conf. on Dec. and Control, vol.1, 1990.

  3. Chen, Y.H. and Piontek, E.D., Robust modal control of distributed parameter system with uncertainty, Proc. Amer. Contr., 1990, vol. 2, pp. 2014–2019.

    Google Scholar 

  4. Poznyak, A.S., Osnovy robastnogo upravleniya (H -teoriya) (Foundations of Robust Management (N -Theory)), Moscow: Mos. Fiz. Tekhn. Inst., 1991.

    Google Scholar 

  5. Bhattacharyya, S.P., Chapellat, H., and Keel, L.H., Robust Control: The Parametric Approach, Upper Saddle River, New York: Prentice Hall, 1995.

    MATH  Google Scholar 

  6. Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, Upper Saddle River, New York: Prentice Hall, 1996.

    MATH  Google Scholar 

  7. Pupkov, K.A. and Egupov, N.D., Metody robastnogo, neiro-nechetkogo i adaptivnogo upravleniya (Methods of Robust, Neuro-Fuzzy and Adaptive Control), Moscow: Mos. Gos. Tekhn. Univ., 2000.

    Google Scholar 

  8. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

    Google Scholar 

  9. Ho, M.T. and Lin, C.Y., Pid-controller design for robust performance, IEEE Trans. on Aut. Cont., 2003, vol. 48, pp. 1404–1409.

    Article  MathSciNet  Google Scholar 

  10. Nikiforov, V.O., Adaptivnoe i robastnoe upravlenie s kompensatsiei vozmushchenii (Adaptive and Robust Control with the Perturbation Compensation), St. Petersburg: Nauka, 2003.

    Google Scholar 

  11. Yadykin, I.B. and Chaikovskii, M.M., N 2-nastroika regulyatorov zadannoi struktury dlya mnogokonturnykh lineinykh nepreryvnykh sistem s ogranicheniem na N -normu, (N 2-Adjustment of Specified Structure for Multi-Contour Linear Continuous Systems with Restriction According to N Norm), Inst. Probl. Upravl. Ross. Akad. Nauk, 2007.

    Google Scholar 

  12. Nikifirov, V.O., Slita, O.V., and Ushakov, A.V., Intellektualnoe upravlenie v usloviyakh neopredelennosti, (Intellectual Control in the Indetermination Conditions), St. Petersb. Gos. Univ., 2011.

    Google Scholar 

  13. Wie, B. and Bernstein, D.S.A., A benchmark problem and robust control, Proc. Am. Conf. on Control, San Diego, CA, 1991.

    Google Scholar 

  14. Utkin, V.I., Sliding Modes in Optimization and Control Problems, New York: Springer-Verlag, 1992.

    Book  Google Scholar 

  15. de Carlo, R.A., Zak, S.H., and Matthews, G.P., Variable structure control of nonlinear multivariable system. A tutorial, Proc. IEEE, 1988, vol. 76, pp. 212–232.

    Article  Google Scholar 

  16. Wu, Q., Sepehri, N., and Thornton-Trump, A.B., Lyapunov Stability of an Inverted Pendulum Model, Albuquerque, TSI, 1988.

    Google Scholar 

  17. Lee, H. and Tomizuka, M., Adaptive Traction Control, Berkeley: Univ. Calif., 1995.

    Google Scholar 

  18. Kim, A.V., Pimenov, V.G., and Kwon, O.B., Lyapunov-Krasovskii Functional in Stability and Control Problems of Time-Delay System, Albuquerque: TSI, 1998.

    Google Scholar 

  19. Ho, H.F., Wong, Y.K. and Rad, A.B., Adaptive fuzzy sliding mode control design: Lyapunov approach, Proc. IEEE Int. Conf. on Fuzzy System, 2001, pp. 6–11.

    Google Scholar 

  20. Lagrat, I., Ouakka, H., and Boumhidi, I., Fuzzy sliding mode PI controller for nonlinear systems, Proc. 6th WSEAS Int. Conf. on Simulation, Modeling and Optimization, Lisbon, Portugal, 2006, pp. 534–539.

    Google Scholar 

  21. Li, J.H., Li, T.H., and Chen, C.Y., Design of Lyapunov function based fuzzy logic controller for a class of discrete — time systems, Int. J. Fuzzy System, 2007, vol. 9, pp. 1–7.

    MATH  Google Scholar 

  22. King, P.S., Sliding Mode Control, Singapore: Nat. Univ. Singapore, 2010.

    Google Scholar 

  23. Shevtsov, G.S., Lineinaya algebra (Linear Algebra), Moscow: Gardariki, 1999.

    Google Scholar 

  24. Drazenovi, B., The invariance conditions in variable structure systems, Automatica, 1969, vol. 5, pp. 287–295.

    Article  Google Scholar 

  25. Rustamov, G.A. and Gardashov, S.G., and Rustamov, R.G., Stabilization of nonlinear systems on the basis of the method of the Lyapunov function with the nonlinearity and disturbance estimation, Autom. Control Comput. Sci., 2010, vol. 44, pp. 47–52.

    Article  Google Scholar 

  26. Mamedob, G.A., Rustamov, G.A., and Rustamov, R.G., Construction of a logical control by means of optimization of the function when an object model is indeterminante, Autom. Control Comput. Sci., 2010, vol. 44, pp. 119–123.

    Article  Google Scholar 

  27. Rustamov, G.A., Abdullaeva, A.T., and Elchuev, I.A., Realization of sliding motion in a nonlinear stabilization system based on the method of the Lyapunov function, Autom. Control Comput. Sci. 2009, vol. 43, pp. 336–341.

    Article  Google Scholar 

  28. Rustamov, G.A., Constructing quasi-invariant control systems based on the Lyapunov function method for nonlinear plants with an incomplete mathematical model, Autom. Control Comput. Sci. 2012, vol. 46, pp. 95–102.

    Article  Google Scholar 

  29. Rustamov, G.A., Invariant control systems of second order, Proc. 4th Int. Conf. “Problems of Cybernetics and Informatics,” Baku, Vol. 4, 2012, p. 22.

    Google Scholar 

  30. Mamedov, G.A., Rustamov, G.A., and Rustamov, R.G., Construction of a logical control by means of optimization of function when an object model is indeterminante, Autom. Control Comput. Sci. 2010, vol. 44, pp. 119–123.

    Article  Google Scholar 

  31. Rustamov, G.A., Abdullaeva, A.T., and Rustamov, R.G., Optimization of Lyapunov function at relay control of dynamical objects, in Avtomatizatsiya i Sovremennye Tekhnologii (Automatization and Contemporary Technologies), Moscow, 2013, pp. 21–25.

    Google Scholar 

  32. Chen, Y.Q. and Atherton, D.P., Linear Feedback Control. Analysis and Design with MATLAB, Philadelphia: Soc. Indust. Appl. Mathem., 2007, p. 262.

    MATH  Google Scholar 

  33. Krasovskii, N.N., Teoriya upravleniya dvizheniem, (Motion Control Theory), Moscow: Nauka, 1968.

    Google Scholar 

  34. Birch, H., Self-Organization in the van der Pole generator, Univ. Sheffild, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Rustamov.

Additional information

Original Russian Text © G.A. Rustamov, 2013, published in Avtomatika i Vychislitel’naya Tekhnika, 2013, No. 5, pp. 5–24.

About this article

Cite this article

Rustamov, G.A. Absolutely robust control systems. Aut. Control Comp. Sci. 47, 227–241 (2013). https://doi.org/10.3103/S0146411613050052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411613050052

Keywords

Navigation