Abstract
A new approach to constructing robust feedback control systems for nonlinear nonstationary SISO plants with an incomplete mathematical model is proposed. Based on the Lyapunov function method, the initial system is transformed into a degenerate linear system (reduced system) with components of a model of an indeterminate plant being involved in its right part. The robust control strategy lies in suppressing a plant’s model as a potential source of parasite dynamics and reducing the reduced system to a homogeneous equation. The proposed OBS suppressor hyperobserver of a model’s dynamics allows one to reduce the effect of various uncertainties to an indefinitely small value with the simultaneous preservation of the desired dynamics of the reduced system. The desired qualitative characteristics of the reduced system are set by choosing the tuning parameters of a PD controller of the (n − 1)th order. The contrastive analysis of the solutions to a benchmark problem using the Matlab/Simulink package leads to a number of conclusions that are of great practical importance.
Similar content being viewed by others
References
Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A., State-space solutions to standard H 2 and H ∞ control problems, IEEE Trans. Autom. Control, 1989, vol. 34, pp. 831–847.
Dorato, P.U., Parameter design example: Robust flight control for windshear protection, Proc. 29th Conf. on Dec. and Control, vol.1, 1990.
Chen, Y.H. and Piontek, E.D., Robust modal control of distributed parameter system with uncertainty, Proc. Amer. Contr., 1990, vol. 2, pp. 2014–2019.
Poznyak, A.S., Osnovy robastnogo upravleniya (H ∞ -teoriya) (Foundations of Robust Management (N ∞-Theory)), Moscow: Mos. Fiz. Tekhn. Inst., 1991.
Bhattacharyya, S.P., Chapellat, H., and Keel, L.H., Robust Control: The Parametric Approach, Upper Saddle River, New York: Prentice Hall, 1995.
Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, Upper Saddle River, New York: Prentice Hall, 1996.
Pupkov, K.A. and Egupov, N.D., Metody robastnogo, neiro-nechetkogo i adaptivnogo upravleniya (Methods of Robust, Neuro-Fuzzy and Adaptive Control), Moscow: Mos. Gos. Tekhn. Univ., 2000.
Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.
Ho, M.T. and Lin, C.Y., Pid-controller design for robust performance, IEEE Trans. on Aut. Cont., 2003, vol. 48, pp. 1404–1409.
Nikiforov, V.O., Adaptivnoe i robastnoe upravlenie s kompensatsiei vozmushchenii (Adaptive and Robust Control with the Perturbation Compensation), St. Petersburg: Nauka, 2003.
Yadykin, I.B. and Chaikovskii, M.M., N 2-nastroika regulyatorov zadannoi struktury dlya mnogokonturnykh lineinykh nepreryvnykh sistem s ogranicheniem na N ∞-normu, (N 2-Adjustment of Specified Structure for Multi-Contour Linear Continuous Systems with Restriction According to N ∞ Norm), Inst. Probl. Upravl. Ross. Akad. Nauk, 2007.
Nikifirov, V.O., Slita, O.V., and Ushakov, A.V., Intellektualnoe upravlenie v usloviyakh neopredelennosti, (Intellectual Control in the Indetermination Conditions), St. Petersb. Gos. Univ., 2011.
Wie, B. and Bernstein, D.S.A., A benchmark problem and robust control, Proc. Am. Conf. on Control, San Diego, CA, 1991.
Utkin, V.I., Sliding Modes in Optimization and Control Problems, New York: Springer-Verlag, 1992.
de Carlo, R.A., Zak, S.H., and Matthews, G.P., Variable structure control of nonlinear multivariable system. A tutorial, Proc. IEEE, 1988, vol. 76, pp. 212–232.
Wu, Q., Sepehri, N., and Thornton-Trump, A.B., Lyapunov Stability of an Inverted Pendulum Model, Albuquerque, TSI, 1988.
Lee, H. and Tomizuka, M., Adaptive Traction Control, Berkeley: Univ. Calif., 1995.
Kim, A.V., Pimenov, V.G., and Kwon, O.B., Lyapunov-Krasovskii Functional in Stability and Control Problems of Time-Delay System, Albuquerque: TSI, 1998.
Ho, H.F., Wong, Y.K. and Rad, A.B., Adaptive fuzzy sliding mode control design: Lyapunov approach, Proc. IEEE Int. Conf. on Fuzzy System, 2001, pp. 6–11.
Lagrat, I., Ouakka, H., and Boumhidi, I., Fuzzy sliding mode PI controller for nonlinear systems, Proc. 6th WSEAS Int. Conf. on Simulation, Modeling and Optimization, Lisbon, Portugal, 2006, pp. 534–539.
Li, J.H., Li, T.H., and Chen, C.Y., Design of Lyapunov function based fuzzy logic controller for a class of discrete — time systems, Int. J. Fuzzy System, 2007, vol. 9, pp. 1–7.
King, P.S., Sliding Mode Control, Singapore: Nat. Univ. Singapore, 2010.
Shevtsov, G.S., Lineinaya algebra (Linear Algebra), Moscow: Gardariki, 1999.
Drazenovi, B., The invariance conditions in variable structure systems, Automatica, 1969, vol. 5, pp. 287–295.
Rustamov, G.A. and Gardashov, S.G., and Rustamov, R.G., Stabilization of nonlinear systems on the basis of the method of the Lyapunov function with the nonlinearity and disturbance estimation, Autom. Control Comput. Sci., 2010, vol. 44, pp. 47–52.
Mamedob, G.A., Rustamov, G.A., and Rustamov, R.G., Construction of a logical control by means of optimization of the function when an object model is indeterminante, Autom. Control Comput. Sci., 2010, vol. 44, pp. 119–123.
Rustamov, G.A., Abdullaeva, A.T., and Elchuev, I.A., Realization of sliding motion in a nonlinear stabilization system based on the method of the Lyapunov function, Autom. Control Comput. Sci. 2009, vol. 43, pp. 336–341.
Rustamov, G.A., Constructing quasi-invariant control systems based on the Lyapunov function method for nonlinear plants with an incomplete mathematical model, Autom. Control Comput. Sci. 2012, vol. 46, pp. 95–102.
Rustamov, G.A., Invariant control systems of second order, Proc. 4th Int. Conf. “Problems of Cybernetics and Informatics,” Baku, Vol. 4, 2012, p. 22.
Mamedov, G.A., Rustamov, G.A., and Rustamov, R.G., Construction of a logical control by means of optimization of function when an object model is indeterminante, Autom. Control Comput. Sci. 2010, vol. 44, pp. 119–123.
Rustamov, G.A., Abdullaeva, A.T., and Rustamov, R.G., Optimization of Lyapunov function at relay control of dynamical objects, in Avtomatizatsiya i Sovremennye Tekhnologii (Automatization and Contemporary Technologies), Moscow, 2013, pp. 21–25.
Chen, Y.Q. and Atherton, D.P., Linear Feedback Control. Analysis and Design with MATLAB, Philadelphia: Soc. Indust. Appl. Mathem., 2007, p. 262.
Krasovskii, N.N., Teoriya upravleniya dvizheniem, (Motion Control Theory), Moscow: Nauka, 1968.
Birch, H., Self-Organization in the van der Pole generator, Univ. Sheffild, 2009.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © G.A. Rustamov, 2013, published in Avtomatika i Vychislitel’naya Tekhnika, 2013, No. 5, pp. 5–24.
About this article
Cite this article
Rustamov, G.A. Absolutely robust control systems. Aut. Control Comp. Sci. 47, 227–241 (2013). https://doi.org/10.3103/S0146411613050052
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S0146411613050052